Digital Signal Processing in Real-time for Magneto-electrical Sensor Systems
磁电传感器系统的实时数字信号处理
基本信息
- 批准号:269991101
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2015
- 资助国家:德国
- 起止时间:2014-12-31 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research proposal focuses on real-time processing for new magneto-electrical sensor systems, which are able to operate at room temperature. With those sensors (and the corresponding signal processing techniques) medically relevant research questions in the area of neurology should be addressed. The objectives are to enhance already existing signal detection, estimation, and enhancement algorithms but also to design new adaptive processing schemes. The focus of these algorithms should be on real-time implementations. The entire proposal is structured in three parts:1. A multi-channel real-time system should be built up, which is capable of connecting a multitude of magneto-electrical, electrical, and acoustic as well as acceleration sensors. All of these inputs should be equalized in an optimal manner. Background, amplifier, and other noise types should be suppressed. Exogenous noise sources should be cancelled using a combined approach consisting of a beamforming and a cancellation stage.2. The enhanced signals obtained from part 1 will be processed by a second stage in order to remove endogenous artifacts as they appear due to heart beats, eye blinks, or muscle activity. This processing stage is designed based on state-space approaches.3. Based on the DICS algorithm (DICS is a shortcut for Dynamic Imaging of Coherent Sources) an innovative source localization in real time will be investigated. For this purpose the further enhanced signals of part 2 will be used.The results of all three parts of this proposal interact. If, e.g., the coherence analysis and source localization detect the origin of a neurologic network in a certain area, the magneto-electrical sensors can be adjusted and leveled towards this origin after a short measurement. As a result the spatial resolution of the analysis will improve. This also applies to the optimal use of the bandwidth of the magneto-electrical sensors. Currently the bandwidth of the sensors is between 10 and 30 Hz and therefore not comparable to conventional (SQUID based) sensors. With the help of a frequency shift the maximum sensor sensitivity can be aligned adaptively. If a frequency range of interest is determined based on a preliminary analysis, the demodulation of the sensors can be adapted. Consequently the frequency range of interest will be investigated with the optimal signal-to-noise ratio. This leads to the development of a closed control loop, which justifies the real-time requirement of this research proposal.
该研究计划的重点是新的磁电传感器系统,这是能够在室温下工作的实时处理。有了这些传感器(和相应的信号处理技术),神经病学领域的医学相关研究问题应该得到解决。我们的目标是提高现有的信号检测,估计和增强算法,但也设计新的自适应处理方案。这些算法的重点应该放在实时实现上。整个提案分为三个部分:1. 应建立一个多通道实时系统,该系统能够连接多个磁电、电、声以及加速度传感器。所有这些输入都应该以最佳方式均衡。背景、放大器和其他噪声类型应得到抑制。外生噪声源应使用由波束形成和消除阶段组成的组合方法来消除。 从第1部分获得的增强信号将通过第二阶段进行处理,以去除由于心跳、眨眼或肌肉活动而出现的内源性伪影。该处理阶段是基于状态空间方法设计的. 基于DICS算法(DICS是相干源动态成像的一种捷径),本文将研究一种新的真实的实时源定位方法。为此目的,将使用第2部分的进一步增强的信号。本建议的所有三个部分的结果相互作用。如果,例如,相干性分析和源定位检测某个区域中的神经网络的起源,在短暂的测量之后,可以将磁电传感器调整并调平到该起源。因此,分析的空间分辨率将提高。这也适用于磁电传感器带宽的最佳使用。目前,传感器的带宽在10和30 Hz之间,因此无法与传统的(基于SQUID的)传感器相比。在频移的帮助下,最大传感器灵敏度可以自适应地对准。如果基于初步分析确定了感兴趣的频率范围,则可以调整传感器的解调。因此,感兴趣的频率范围将与最佳的信噪比进行研究。这导致了一个闭环控制回路的发展,这证明了本研究建议的实时要求。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Günther Deuschl其他文献
Professor Dr. Günther Deuschl的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Günther Deuschl', 18)}}的其他基金
Project P9: Resonant magnetoelectric sensor systems for the measurement of deep brain stimulation
项目 P9:用于测量深部脑刺激的谐振磁电传感器系统
- 批准号:
269882227 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Research Grants
Analysis of monogenic essential Tremor by exome sequencing.
通过外显子组测序分析单基因特发性震颤。
- 批准号:
258890088 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Research Grants
The impact of rare variants in lysosomal genes in the pathogenesis of Parkinson disease
溶酶体基因罕见变异对帕金森病发病机制的影响
- 批准号:
254694855 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Research Grants
Therapeutic and neurophysiological effects of immobilisation followed by motor training in writer´s cramp
固定后进行运动训练对作家痉挛的治疗和神经生理学作用
- 批准号:
5397661 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
一种检测结核分枝杆菌抗原标志物的方法学研究——基于signal-on型电化学适体检测体系的构建及应用
- 批准号:81601856
- 批准年份:2016
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
Apoptosis signal-regulating kinase 1是七氟烷抑制小胶质细胞活化的关键分子靶点?
- 批准号:81301123
- 批准年份:2013
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: FuSe: Deep Learning and Signal Processing using Silicon Photonics and Digital CMOS Circuits for Ultra-Wideband Spectrum Perception
合作研究:FuSe:利用硅光子学和数字 CMOS 电路实现超宽带频谱感知的深度学习和信号处理
- 批准号:
2329014 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: FuSe: Deep Learning and Signal Processing using Silicon Photonics and Digital CMOS Circuits for Ultra-Wideband Spectrum Perception
合作研究:FuSe:利用硅光子学和数字 CMOS 电路实现超宽带频谱感知的深度学习和信号处理
- 批准号:
2329012 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: FuSe: Deep Learning and Signal Processing using Silicon Photonics and Digital CMOS Circuits for Ultra-Wideband Spectrum Perception
合作研究:FuSe:利用硅光子学和数字 CMOS 电路实现超宽带频谱感知的深度学习和信号处理
- 批准号:
2329015 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: FuSe: Deep Learning and Signal Processing using Silicon Photonics and Digital CMOS Circuits for Ultra-Wideband Spectrum Perception
合作研究:FuSe:利用硅光子学和数字 CMOS 电路实现超宽带频谱感知的深度学习和信号处理
- 批准号:
2329013 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Design and Implementation of Digital Signal Processing Algorithms for Communication and Biomedical Applications
通信和生物医学应用数字信号处理算法的设计和实现
- 批准号:
RGPIN-2017-06626 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Intelligent Fiber Sensors via Digital Signal Processing and Machine Learning
通过数字信号处理和机器学习的智能光纤传感器
- 批准号:
RGPIN-2021-02559 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Performance Breakthrough in Distributed Fiber Sensing by Digital Signal Processing of Optical Signal Amplitude and Phase
通过光信号幅度和相位的数字信号处理实现分布式光纤传感的性能突破
- 批准号:
560813-2020 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Alliance Grants
Co-development of digital signal processing methods and circuit design techniques for novel 5G and beyond transmitters
共同开发新型 5G 及其他发射机的数字信号处理方法和电路设计技术
- 批准号:
RGPIN-2022-04641 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Design and Implementation of Digital Signal Processing Algorithms for Communication and Biomedical Applications
通信和生物医学应用数字信号处理算法的设计和实现
- 批准号:
RGPIN-2017-06626 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Real-time Digital Signal Processing Methods and their Implementation for Overcoming Massive MIMO Transmitter Hardware Limitations
克服大规模 MIMO 发射机硬件限制的实时数字信号处理方法及其实现
- 批准号:
543919-2019 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Collaborative Research and Development Grants