Intramolecular dispersive interactions in the gas phase: experimental reference data and comparison with solid state and theory
气相分子内色散相互作用:实验参考数据以及与固态和理论的比较
基本信息
- 批准号:271386299
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Priority Programmes
- 财政年份:2015
- 资助国家:德国
- 起止时间:2014-12-31 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Our project focusses on applying gas electron diffraction (GED) and other methods to explore the precise geometrical structure of a range of free molecules with intramolecular dispersion interactions. The results obtained for free gas-phase molecules will be compared with data obtained in the solid state by single crystal X-ray diffraction (XRD). Such studies in different phases will clarify whether and to what extent intermolecular solid-state effects change molecular structures as well as the occurrence and strengths of dispersion interactions. Most of the experimental data on larger, more complicated systems are derived from solid-state methods, but the fundamental interactions are preferably studied by gas-phase techniques. The question of comparability is thus obvious. There is also enormous progress in quantum-chemical (QC) method development for describing increasingly larger systems including a thorough treatment of dispersion. However, such calculations are usually applied to single molecules – again different from solid-state results. Comparison of experimental data for free molecules with a range of state-of-the-art QC calculations will help to evaluate the quality of such theory-approximations. With a set of data from gas-phase and solid-state methods as well as QC, we will be able to study method- or phase-dependence of dispersion interactions. In the first project phase we have demonstrated that our approach indeed provides valuable structural and thermochemical information on the occurrence and strengths of intramolecular dispersion interactions. The objects of study stemmed from own preparative work (e.g. interactions C6H5/C6F5, Cu···Cu or Hg···Hg) and from co-operations with other SPP groups (e.g. alkyl/alkyl in large diamantyl dimers). In some cases we found severe differences between gas-phase experiments and highest-level QC calculations, in others good agreement with some QC methods. We also established new ligand systems for synthesizing volatile dinuclear gold complexes. In this way we learned to generate a range of new molecules for studying certain types of dispersion-dominated interactions in isolated form. In the second funding period we will make use of this knowledge and deepen our understanding of intramolecular dispersion interactions, as well as produce challenging new objects plus experimental data as references for dispersion-corrected QC methods. We also aim at understanding the failure of certain methods for certain types of compounds. The various types of intramolecular interactions to be studied include a) σ∙∙∙ σ interactions in hydrocarbons and organosilanes, b) arene π∙∙∙π interactions, c) σ-hole interactions (halogen and chalcogen bonds), and d) d10∙∙∙d10 (e.g. Au∙∙∙Au, Hg∙∙∙Hg) and d10∙∙∙s2 interactions (e.g. Au∙∙∙Bi). We will also undertake GED structure determinations for at least four other groups in the SPP.
我们的项目集中于应用气体电子衍射(GED)和其他方法来探索一系列具有分子内色散相互作用的自由分子的精确几何结构。自由气相分子获得的结果将与通过单晶X射线衍射(XRD)在固态中获得的数据进行比较。在不同阶段的这些研究将澄清是否和在何种程度上分子间的固态效应改变分子结构以及分散相互作用的发生和强度。大部分的实验数据,更大,更复杂的系统是来自固态方法,但基本的相互作用,最好是研究气相技术。因此,可比性问题是显而易见的。量子化学(QC)方法的发展也取得了巨大的进展,用于描述越来越大的系统,包括彻底处理分散。然而,这种计算通常应用于单分子-再次不同于固态结果。自由分子的实验数据与一系列最先进的QC计算的比较将有助于评估这种理论近似的质量。利用来自气相和固态方法以及QC的一组数据,我们将能够研究色散相互作用的方法或相依赖性。在第一个项目阶段,我们已经证明,我们的方法确实提供了有价值的结构和热化学信息的发生和强度的分子内分散相互作用。研究的对象源于自己的准备工作(例如C6 H5/C6 F5,Cu···Cu或Hg··Hg的相互作用)以及与其他SPP基团(例如大的二金刚烷基二聚体中的烷基/烷基)的合作。在某些情况下,我们发现气相实验和最高水平的QC计算之间存在严重差异,在其他情况下,与某些QC方法吻合良好。我们还建立了合成挥发性双核金配合物的新配体体系。通过这种方式,我们学会了生成一系列新分子,用于研究孤立形式的某些类型的色散主导的相互作用。在第二个资助期内,我们将利用这些知识,加深我们对分子内分散相互作用的理解,并产生具有挑战性的新对象和实验数据,作为分散校正QC方法的参考。我们还旨在了解某些类型化合物的某些方法的失败。待研究的各种类型的分子内相互作用包括a)烃和有机硅烷中的σ-π-σ相互作用,B)芳烃π-π-π相互作用,c)σ-空穴相互作用(卤素和硫属元素键),以及d)d10-π-d10(例如Au-π-Au,Hg-π-Hg)和d10-π-d2相互作用(例如Au-π-Bi)。我们还将为SPP中至少四个其他群体进行GED结构确定。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Privatdozent Dr. Raphael Johann Friedrich Berger其他文献
Privatdozent Dr. Raphael Johann Friedrich Berger的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
红树对重金属的定位累积及耦合微观分析与耐受策略研究
- 批准号:30970527
- 批准年份:2009
- 资助金额:35.0 万元
- 项目类别:面上项目
相似海外基金
Well-posedness and Long-time Behavior of Dispersive Integrable Systems
色散可积系统的适定性和长期行为
- 批准号:
2348018 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Low Regularity and Long Time Dynamics in Nonlinear Dispersive Flows
非线性弥散流中的低规律性和长时间动态
- 批准号:
2348908 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Conference: Emergent Phenomena in Nonlinear Dispersive Waves
会议:非线性色散波中的涌现现象
- 批准号:
2339212 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Large time behavior of solutions to nonlinear hyperbolic and dispersive equations with weakly dissipative structure
弱耗散结构非线性双曲和色散方程解的大时间行为
- 批准号:
22KJ2801 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Analysis of Regular and Random Soliton Gases in Integrable Dispersive Partial Differential Equations.
可积色散偏微分方程中规则和随机孤子气体的分析。
- 批准号:
2307142 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Conference: Recent Developments and Future Directions in Nonlinear Dispersive and Wave Equations
会议:非线性色散和波动方程的最新进展和未来方向
- 批准号:
2328459 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Multi-soliton Dynamics for Dispersive Partial Differential Equations
色散偏微分方程的多孤子动力学
- 批准号:
2247290 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
On the Long Time Behavior of Nonlinear Dispersive Equations
非线性色散方程的长期行为
- 批准号:
2306429 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Probabilistic Aspects of Dispersive and Wave Equations
色散方程和波动方程的概率方面
- 批准号:
2246908 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant