Integrated Analysis and Probabilistic Registration of Medical Images with Missing Correspondences
缺失对应的医学图像的综合分析和概率配准
基本信息
- 批准号:271947978
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2015
- 资助国家:德国
- 起止时间:2014-12-31 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The automatic, robust and reliable registration of medical images is a central problem in medical image computing with high impact on image-guided diagnostics and therapy. Currently available registration methods reach their limits, if strong anatomical or pathologic discrepancies are present in the images and corresponding structures are missing in parts of the images. Another limitation of current registration methods is the lack of information they provide to the user about the local (un)certainty of the estimated transformation and therefore does not allow an assessment of the registration results. The aim of this project is to enable the robust and reliable registration of images even if one-to-one correspondences are missing in parts of the images. To achieve this, a general probabilistic registration framework based on correspondence probabilities is developed that does not only rely on image intensities but also on additional information extracted by image analysis methods like organ segmentations, landmarks and local image features to align images. The methods to develop will enable the registration of areas with missing local correspondences as well as the objective assessment of the reliability of the local registration results.The proposed methodical innovations extend the medical application spectrum of image registration algorithms, significantly. For example, the proposed method will facilitate and improve the quality of image-based follow-up studies and clinical monitoring, comparison of pre- and post-operative images as well as image-based statistical studies to reveal spatial distribution patterns of pathological tissues or neuronal activities.
医学图像的自动、稳健、可靠配准是医学图像计算的核心问题,对图像引导的诊断和治疗有着重要的影响。如果图像中存在强烈的解剖或病理差异,并且部分图像中缺少相应的结构,则现有的配准方法将达到其极限。当前配准方法的另一个局限性是它们向用户提供关于估计的变换的局部(非)确定性的信息,因此不允许对配准结果进行评估。该项目的目的是实现稳健可靠的图像配准,即使图像的某些部分缺少一对一的对应。为此,提出了一种基于对应概率的通用概率配准框架,该框架不仅依赖于图像强度,还依赖于器官分割、标志点和局部图像特征等图像分析方法提取的附加信息来对齐图像。所提出的方法将能够对缺失局部对应的区域进行配准,并对局部配准结果的可靠性进行客观评估。例如,该方法将促进和提高基于图像的后续研究和临床监测、手术前后图像的比较以及基于图像的统计研究的质量,以揭示病理组织或神经元活动的空间分布模式。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Registration with probabilistic correspondences - Accurate and robust registration for pathological and inhomogeneous medical data
- DOI:10.1016/j.cviu.2019.102839
- 发表时间:2020-01-01
- 期刊:
- 影响因子:4.5
- 作者:Krueger, Julia;Schultz, Sandra;Ehrhardt, Jan
- 通讯作者:Ehrhardt, Jan
Unsupervised pathology detection in medical images using conditional variational autoencoders
- DOI:10.1007/s11548-018-1898-0
- 发表时间:2019-03-01
- 期刊:
- 影响因子:3
- 作者:Uzunova, Hristina;Schultz, Sandra;Ehrhardt, Jan
- 通讯作者:Ehrhardt, Jan
Bayesian inference for uncertainty quantification in point-based deformable image registration
基于点的变形图像配准中不确定性量化的贝叶斯推理
- DOI:10.1117/12.2512988
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:S. Schultz;J. Krüger;H. Handels;J. Ehrhardt
- 通讯作者:J. Ehrhardt
Evaluation of Image Processing Methods for Clinical Applications - Mimicking Clinical Data Using Conditional GANs
临床应用图像处理方法的评估 - 使用条件 GAN 模拟临床数据
- DOI:10.1007/978-3-658-25326-4_5
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:H. Uzunova;S. Schultz;H. Handels;J. Ehrhardt
- 通讯作者:J. Ehrhardt
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dr. Jan Ehrhardt其他文献
Dr. Jan Ehrhardt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dr. Jan Ehrhardt', 18)}}的其他基金
4D Multi object segmentation based on MR image sequences - Medical application for evaluation of myocardial differences in shape and function after infarction
基于 MR 图像序列的 4D 多对象分割 - 评估梗塞后心肌形状和功能差异的医学应用
- 批准号:
263745607 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Research Grants
Integrierte 4D-Segmentierung und Registrierung räumlich-zeitlicher Bildfolgen
时空图像序列的集成 4D 分割和配准
- 批准号:
66291222 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
- 批准号:30470153
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
Analytic and Probabilistic Methods in Geometric Functional Analysis
几何泛函分析中的解析和概率方法
- 批准号:
2246484 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Collaboration Research: Probabilistic, Geometric, and Topological Analysis of Neural Networks, From Theory to Applications
合作研究:神经网络的概率、几何和拓扑分析,从理论到应用
- 批准号:
2133851 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Model-based compression and probabilistic analysis of non-Markovian sequences
职业:非马尔可夫序列的基于模型的压缩和概率分析
- 批准号:
2144974 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: Probabilistic, Geometric, and Topological Analysis of Neural Networks, From Theory to Applications
合作研究:神经网络的概率、几何和拓扑分析,从理论到应用
- 批准号:
2133822 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Uncertainty Quantification for Probabilistic Stability Analysis and Uncertainty-Aware Control of Electric Power Systems
电力系统概率稳定性分析和不确定性感知控制的不确定性量化
- 批准号:
RGPIN-2022-03236 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Probabilistic, Geometric, and Topological Analysis of Neural Networks, From Theory to Applications
合作研究:神经网络的概率、几何和拓扑分析,从理论到应用
- 批准号:
2133861 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Probabilistic Analysis of Water Distribution System Peaking Factors
供水系统峰值因素的概率分析
- 批准号:
572717-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
Collaborative Research: Probabilistic, Geometric, and Topological Analysis of Neural Networks, From Theory to Applications
合作研究:神经网络的概率、几何和拓扑分析,从理论到应用
- 批准号:
2133806 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Probabilistic Analysis of Combinatorial Objects
组合对象的概率分析
- 批准号:
565339-2021 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Optimal security patch management tool design based on probabilistic modeling and analysis
基于概率建模与分析的最优安全补丁管理工具设计
- 批准号:
21K17742 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists