Rate Optimality of Adaptive Finite Elements for Parabolic Partial Differential Equations
抛物型偏微分方程自适应有限元的速率最优性
基本信息
- 批准号:273218570
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2015
- 资助国家:德国
- 起止时间:2014-12-31 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this project we want to analyze finite element methods for parabolic partial differential equations (pPDEs) with main focus on adaptive discretizations.Many processes in natural science and engineering are modeled by pPDEs. Numerical analysis for this problem class is a very active research area at the forefront of numerical mathematics. For many real life problems computations based on uniform methods are by far too time con- suming. The efficient numerical simulation of transient problems necessitates adaptive methods with optimal complexity.Our experience shows that adaptive finite elements for elliptic partial differential equations (ePDEs) have gained substantial maturity. Their use in numerous practical applications reveals a very robust performance. Moreover, proofs of convergence and optimal decay rates in terms of degrees of freedom (DOFs) are available. These proofs are based on a very precise mathematical understanding of the adaptive method as a whole.It is a todays vision to have access to similar robust and efficient adaptive methods for pPDEs. The design of adaptive simulation environments for real life applications would tremendously profit from a better understanding and a better mathematical foundation of adaptive finite elements for pPDEs. However, the analysis of such methods as a whole is yet, from our point of view, in its infancy. We have a single convergence result for the heat equation; a proof of an optimal performance is missing completely.The proposed research project therefore focuses on the design and analysis of rate optimal adaptive finite element methods for pPDEs. This important and challenging topic requires a substantial amount of investigations concerning fundamental properties of appropriate finite element discretizations. We will investigate adaptive approximation classes and decay rates of adaptively generated sequences of discrete solutions. The latter may require new mesh and time-step adaptation schemes.With the proposed research we will substantially foster the development and numerical analy- sis of optimal adaptive methods for pPDEs suitable for real-life applications on high performance computers. In addition, the investigations will contribute to a better understanding needed for the optimality analysis of adaptive methods for strongly non-symmetric problems.
在这个项目中,我们想分析抛物型偏微分方程(pPDEs)的有限元方法,主要关注自适应离散化。自然科学和工程中的许多过程都是用ppde建模的。这类问题的数值分析是数值数学前沿的一个非常活跃的研究领域。对于许多现实生活中的问题,基于统一方法的计算是非常耗时的。对瞬态问题进行有效的数值模拟需要具有最优复杂度的自适应方法。我们的经验表明,椭圆型偏微分方程(ePDEs)的自适应有限元已经相当成熟。它们在许多实际应用中的使用显示出非常强大的性能。此外,收敛性和最优衰减率在自由度(dof)方面的证明是可用的。这些证明是基于对整个自适应方法的非常精确的数学理解。为ppde提供类似的健壮和有效的自适应方法是当今的愿景。对ppde的自适应有限元的更好理解和更好的数学基础将极大地有利于为现实生活应用设计自适应仿真环境。然而,从我们的观点来看,对这些方法的整体分析还处于起步阶段。对于热方程我们有一个单一的收敛结果;最优性能的证明是完全缺失的。因此,提出的研究项目侧重于pPDEs速率最优自适应有限元方法的设计和分析。这一重要而具有挑战性的课题需要对适当的有限元离散化的基本性质进行大量的研究。我们将研究自适应逼近类和自适应生成的离散解序列的衰减率。后者可能需要新的网格和时间步适应方案。通过提出的研究,我们将大力促进ppde的最佳自适应方法的开发和数值分析,适合在高性能计算机上的实际应用。此外,这些研究将有助于更好地理解强非对称问题的自适应方法的最优性分析。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A convergent time-space adaptive dG(s) finite element method for parabolic problems motivated by equal error distribution
等误差分布抛物线问题的收敛时空自适应dG(s)有限元方法
- DOI:10.1093/imanum/dry005
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:F. D. Gaspoz;C. Kreuzer;K. G. Siebert;D. Ziegler
- 通讯作者:D. Ziegler
A Weak Compatibility Condition for Newest Vertex Bisection in any dimension
任意维最新顶点平分的弱相容条件
- DOI:10.1137/17m1156137
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:M. Alkämper;F. D. Gaspoz;R. Klöfkorn
- 通讯作者:R. Klöfkorn
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Kunibert G. Siebert其他文献
Professor Dr. Kunibert G. Siebert的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Kunibert G. Siebert', 18)}}的其他基金
Design and Analysis of Adaptive Finite element Discretizations for Optimal Control Problems
最优控制问题的自适应有限元离散设计与分析
- 批准号:
133447048 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Priority Programmes
Adaptive Finite Elements for Parabolic Partial Differential Equations
抛物型偏微分方程的自适应有限元
- 批准号:
78169562 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Research Grants
Numerical methods for fluids with many capillary free boundaries
具有许多毛细管自由边界的流体的数值方法
- 批准号:
5453262 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Research Units
Generalized Newtonian fluids and electrorheological fluids
广义牛顿流体和电流变流体
- 批准号:
5453258 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Research Units
相似海外基金
Data-efficient Safe Control with Recovery-to-Optimality Guarantees
数据高效的安全控制,并保证恢复最佳性
- 批准号:
2227311 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Clarification of Minimax Optimality in Fair Regression under Demographic Parity
人口均等情况下公平回归中极小极大最优性的澄清
- 批准号:
23K13011 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Robustness and Optimality of Estimation and Testing
估计和测试的稳健性和最优性
- 批准号:
2310769 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Investigating the role of the Ccr4-Not complex in regulating codon optimality-mediated mRNA decay
研究 Ccr4-Not 复合体在调节密码子最优性介导的 mRNA 衰减中的作用
- 批准号:
10749985 - 财政年份:2023
- 资助金额:
-- - 项目类别:
CAREER: Federated Learning: Statistical Optimality and Provable Security
职业:联邦学习:统计最优性和可证明的安全性
- 批准号:
2144593 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Continuing Grant
RI: Medium: Collaborative Research:Algorithmic High-Dimensional Statistics: Optimality, Computtional Barriers, and High-Dimensional Corrections
RI:中:协作研究:算法高维统计:最优性、计算障碍和高维校正
- 批准号:
2218713 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Understanding the relationship between codon optimality and mRNA stability
了解密码子最优性和 mRNA 稳定性之间的关系
- 批准号:
10623162 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Understanding the relationship between codon optimality and mRNA stability
了解密码子最优性和 mRNA 稳定性之间的关系
- 批准号:
10330674 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Optimality in analysis and geometry of probability measures
概率测度分析和几何的最优性
- 批准号:
RGPIN-2019-03926 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Statistical Modelling for Adaptive Design of Clinical Trials: Optimality and Efficiency
临床试验自适应设计的统计建模:最优性和效率
- 批准号:
RGPIN-2016-05221 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual