Generalized Geometries and their Applications
广义几何及其应用
基本信息
- 批准号:DP0774193
- 负责人:
- 金额:$ 18.73万
- 依托单位:
- 依托单位国家:澳大利亚
- 项目类别:Discovery Projects
- 财政年份:2007
- 资助国家:澳大利亚
- 起止时间:2007-01-01 至 2010-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Geometry is one of the pillars of both ancient and modern mathematics. It also plays a vital role in many scientific applications, in particular in physics. Progress on the mathematical aspects and the applications have often gone hand in hand, as for example with differential geometry and general relativity. Geometry is a very fruitful area for interdisciplinary research.
Australia has a long tradition and a recognized research strength in Mathematical Physics, and this project will contribute to maintaining that status. An integral part of this proposal is student involvement and postgraduate research training, for which the topic lends itself particularly well.
几何是古代和现代数学的支柱之一。它在许多科学应用中也起着至关重要的作用,特别是在物理学中。数学方面的进步和应用常常是齐头并进的,例如微分几何和广义相对论。几何学是一个跨学科研究成果丰硕的领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Prof Peter Bouwknegt其他文献
Prof Peter Bouwknegt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Prof Peter Bouwknegt', 18)}}的其他基金
Ubiquity of K-theory and T-duality
K 理论和 T 对偶性的普遍性
- 批准号:
DP150100008 - 财政年份:2015
- 资助金额:
$ 18.73万 - 项目类别:
Discovery Projects
Dualities in String Theory and Conformal Field Theory in the context of the Geometric Langlands Program
几何朗兰兹纲领背景下弦理论和共形场论的对偶性
- 批准号:
DP0878184 - 财政年份:2008
- 资助金额:
$ 18.73万 - 项目类别:
Discovery Projects
Mathematics in Contemporary Science
当代科学中的数学
- 批准号:
SR0354466 - 财政年份:2004
- 资助金额:
$ 18.73万 - 项目类别:
Special Research Initiatives
Twisted K-theory and its application to String Theory and Conformal Field Theory
扭曲 K 理论及其在弦理论和共形场论中的应用
- 批准号:
DP0210141 - 财政年份:2002
- 资助金额:
$ 18.73万 - 项目类别:
Discovery Projects
相似海外基金
Morphing Waverider Geometries at High-Speed and their Control
高速变形乘波体几何形状及其控制
- 批准号:
2749386 - 财政年份:2022
- 资助金额:
$ 18.73万 - 项目类别:
Studentship
Efficient synthesis of thermal-stimulus responsive solid-state light-emitting molecules with various molecular geometries and evaluation of their structure-property relationship
具有不同分子几何形状的热刺激响应固态发光分子的高效合成及其构效关系评估
- 批准号:
21K05212 - 财政年份:2021
- 资助金额:
$ 18.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Finite Geometries and their Applications
有限几何及其应用
- 批准号:
8726-2013 - 财政年份:2017
- 资助金额:
$ 18.73万 - 项目类别:
Discovery Grants Program - Individual
Effective contaminant source geometries and their implications for final plume extension - ESTIMATE
有效的污染物源几何形状及其对最终羽流延伸的影响 - 估计
- 批准号:
383453752 - 财政年份:2017
- 资助金额:
$ 18.73万 - 项目类别:
Research Grants
Random Walks and Diffusions and Their Geometries
随机游走和扩散及其几何
- 批准号:
1707589 - 财政年份:2017
- 资助金额:
$ 18.73万 - 项目类别:
Standard Grant
Finite Geometries and their Applications
有限几何及其应用
- 批准号:
8726-2013 - 财政年份:2016
- 资助金额:
$ 18.73万 - 项目类别:
Discovery Grants Program - Individual
Finite Geometries and their Applications
有限几何及其应用
- 批准号:
8726-2013 - 财政年份:2015
- 资助金额:
$ 18.73万 - 项目类别:
Discovery Grants Program - Individual
Finite Geometries and their Applications
有限几何及其应用
- 批准号:
8726-2013 - 财政年份:2014
- 资助金额:
$ 18.73万 - 项目类别:
Discovery Grants Program - Individual
Finite Geometries and their Applications
有限几何及其应用
- 批准号:
8726-2013 - 财政年份:2013
- 资助金额:
$ 18.73万 - 项目类别:
Discovery Grants Program - Individual
Hopf algebras of transvers geometries and their hopf cyclic cohomology
横向几何的 Hopf 代数及其 hopf 循环上同调
- 批准号:
355531-2008 - 财政年份:2012
- 资助金额:
$ 18.73万 - 项目类别:
Discovery Grants Program - Individual