Simulation, analysis and modeling of unsteady flow in porous media

多孔介质中非定常流动的模拟、分析和建模

基本信息

项目摘要

Unsteady porous media flow establish an important class of flow phenomena. There is a number of technical applications and environmental flow problems in which the flow is unsteady, e.g. flows through plant canopies in atmospheric boundary layers and under the influence of waves underwater or the interaction of a turbulent boundary layer flow with the flow and transport in the upper layer of the soil or a snow layer. The flow of blood and mass transport in living organisms can as well be considered as unsteady flow through porous media. So far, a unique description and modeling of these unsteady flow problems can not be found in the literature and different concepts on how to treat them exist.In most cases, flows in porous media are described on the scale of a representative elementary volume (REV). On this scale it is necessary to model the interaction between flow and solid by suitable models. The well known Darcy and Forchheimer equations are widely accepted for steady flows in porous media, although the coefficients depend strongly on the flow state. In unsteady flows, the steady-state interaction models can not be used as they strongly vary during unsteady flow. For unsteady flow in the linear regime (Re<<1), the applicant was able to demonstrate that the volume averaged equation for the kinetic energy provides a correction to the time constant in the unsteady Darcy equation that agrees well with fully resolved solutions of Navier-Stokes equations in the pore space.The goal of this proposal is to analyze unsteady flow in porous media in the non-linear and turbulent regime. We intend to study transient flow after a step change in pressure gradient and oscillatory flow. A direct numerical simulation in fully resolved pore space will be undertaken using our own Navier-Stokes solver. We plan to do simulations in two-dimensional geometries (cylinder packs) and three-dimensional geometries (sphere packs). Our interest is on macroscopic modeling of interaction terms, dissipation and time constant in unsteady porous media flow. A special focus will be on the transition from linear to non-linear and from non-linear to turbulent states in unsteady porous media flow.
不稳定的多孔介质流动建立了重要的流动现象。有许多技术应用和环境流问题,其中流动不稳定,例如在大气边界层中流过植物檐篷,并在水下波的影响下或湍流边界层的相互作用与土壤上层或雪层上层的流动和运输的相互作用。在生物体中,血液和质量运输的流量也可以视为通过多孔培养基的不稳定流动。到目前为止,在文献中找不到对这些不稳定流问题的独特描述和建模,以及关于如何治疗它们的不同概念,在大多数情况下,在代表性基本体积(REV)的规模上描述了多孔介质中的流量。在此规模上,有必要通过合适的模型对流与固体之间的相互作用进行建模。众所周知的Darcy和Forchheimer方程在多孔介质中被广泛接受,尽管系数在很大程度上取决于流量状态。在不稳定的流动中,稳态相互作用模型无法在不稳定的流动过程中强烈变化。对于线性状态中不稳定流动的流动(RE << 1),申请人能够证明,动能的音量平均方程式可以纠正不稳定的Darcy方程中的时间常数,该方程与孔隙空间中Navier-Stokes方程式完全解决的解决方案非常吻合。该建议的目标是该建议的目标。我们打算在压力梯度和振荡流的阶段变化后研究瞬态流动。将使用我们自己的Navier-Stokes求解器进行完全分辨的孔隙空间中的直接数值模拟。我们计划在二维几何形状(圆柱体包)和三维几何形状(球形包)中进行模拟。我们的兴趣是对相互作用项,耗散和时间常数的宏观建模。在不稳定的多孔介质流中,将特别关注从线性到非线性以及从非线性到湍流状态的过渡。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Michael Manhart其他文献

Professor Dr.-Ing. Michael Manhart的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Michael Manhart', 18)}}的其他基金

Flow and transport at an interface between a turbulent flow and a porous medium
湍流与多孔介质之间界面的流动和传输
  • 批准号:
    403236141
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Experimental and numerical analysis of the local scour flow field and sediment transport around a cylindrical pier
圆柱墩周围局部冲刷流场及泥沙运移的实验与数值分析
  • 批准号:
    233196822
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Experimentelle Untersuchung der turbulenten Strömung über periodisch angeordnete Hügel
周期性丘陵湍流流动实验研究
  • 批准号:
    36350644
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Wall-layer models for large eddy simulation of complex flows
用于复杂流动大涡模拟的壁层模型
  • 批准号:
    5405894
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Research Units
Direkte, Large-Eddy- und Filtered-Density-Funktion- Simulation des Mikromischers
微混合器的直接、大涡和过滤密度函数模拟
  • 批准号:
    5385603
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes

相似国自然基金

面向功能分析的智能化几何造型方法
  • 批准号:
    92270205
  • 批准年份:
    2022
  • 资助金额:
    300.00 万元
  • 项目类别:
    重大研究计划
基于弱监督深度学习的三维模型多特征自适应形状分析方法研究
  • 批准号:
    61872321
  • 批准年份:
    2018
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目
复杂产品模型等几何有限块理论方法及技术研究
  • 批准号:
    51705158
  • 批准年份:
    2017
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
基于有理分形理论的复杂纹理图像的几何特征分析及其应用
  • 批准号:
    61672018
  • 批准年份:
    2016
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
面向CAD/CAE的T样条实体建模理论与应用研究
  • 批准号:
    61572056
  • 批准年份:
    2015
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Multi-Timescale Dynamics Modeling, Simulation, and Analysis of Converter-Dominated Power Systems
职业:以转换器为主导的电力系统的多时间尺度动态建模、仿真和分析
  • 批准号:
    2339148
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Caring for Providers to Improve Patient Experience (CPIPE) Study
关爱医疗服务提供者以改善患者体验 (CPIPE) 研究
  • 批准号:
    10556284
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
High-performance deep neural networks for medical image analysis
用于医学图像分析的高性能深度神经网络
  • 批准号:
    10723553
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Personalizing Circumpapillary Retinal Nerve Fiber Layer Thickness Norms for Glaucoma
个性化青光眼环视乳头视网膜神经纤维层厚度标准
  • 批准号:
    10728042
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Accurate and Individualized Prediction of Excitation-Inhibition Imbalance in Alzheimer's Disease using Data-driven Neural Model
使用数据驱动的神经模型准确、个性化地预测阿尔茨海默病的兴奋抑制失衡
  • 批准号:
    10727356
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了