High-performance deep neural networks for medical image analysis

用于医学图像分析的高性能深度神经网络

基本信息

  • 批准号:
    10723553
  • 负责人:
  • 金额:
    $ 8.92万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

Project Summary Lack of transparency and trustworthiness of deep neural networks (DNNs) has long been recognized as a major drawback of the technology, hindering its widespread acceptance in many practical applications. The objective of this project is to establish a novel contrastive feature analysis (CFA) framework for reliable visualization of the high dimensional feature space and effective design of high-performance DNNs for medical image analysis. We hypothesize that CFA-based feature visualization will enable us to quantify the quality of the feature space at different layers during training/testing of a DNN and empower us with an effective tool to prune the network architecture for enhanced performance. Specifically, we will (1) develop an efficient visualization technique CFA for high dimensional feature data, 2) apply the CFA visualization framework to automatically refine DNN architecture for improved performance, and 3) demonstrate the potential of CFA in solving clinical problems. Successful completion of the project will enable us to analyze the feature data reliably and quantify the quality of the feature space at different layers of a DNN. The study also promises to provide high-performance DNNs for medical image analysis to substantially improve the AI-based diagnosis, prognosis and treatment planning of different diseases.
项目摘要 深度神经网络(DNN)缺乏透明度和可信度一直被认为是一个主要的问题。 该技术的缺点,阻碍了其在许多实际应用中的广泛接受。客观 该项目的目的是建立一个新的对比特征分析(CFA)框架,用于可靠的可视化, 高维特征空间和用于医学图像分析的高性能DNN的有效设计。我们 假设基于CFA特征可视化将使我们能够以 在DNN的训练/测试过程中使用不同的层,并为我们提供有效的工具来修剪网络 架构,以增强性能。具体而言,我们将(1)开发一种有效的可视化技术CFA 对于高维特征数据,2)应用CFA可视化框架自动细化DNN 架构,以提高性能,3)证明CFA在解决临床 问题该项目的成功完成将使我们能够可靠地分析特征数据并量化 DNN的不同层的特征空间的质量。该研究还承诺提供高性能 DNN用于医学图像分析,以大幅改善基于AI的诊断,预后和治疗 针对不同疾病的规划。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Md Tauhidul Islam其他文献

Md Tauhidul Islam的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Computer Vision for Malaria Microscopy: Automated Detection and Classification of Plasmodium for Basic Science and Pre-Clinical Applications
用于疟疾显微镜的计算机视觉:用于基础科学和临床前应用的疟原虫自动检测和分类
  • 批准号:
    10576701
  • 财政年份:
    2023
  • 资助金额:
    $ 8.92万
  • 项目类别:
Identifying Brain Network Features that Underlie Clinical Classification
识别临床分类基础的大脑网络特征
  • 批准号:
    574538-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 8.92万
  • 项目类别:
    University Undergraduate Student Research Awards
Transcriptomic classification of non-muscle invasive bladder cancer and its clinical and prognostic implication
非肌层浸润性膀胱癌的转录组学分类及其临床和预后意义
  • 批准号:
    10693811
  • 财政年份:
    2022
  • 资助金额:
    $ 8.92万
  • 项目类别:
Transcriptomic classification of non-muscle invasive bladder cancer and its clinical and prognostic implication
非肌层浸润性膀胱癌的转录组学分类及其临床和预后意义
  • 批准号:
    10388707
  • 财政年份:
    2022
  • 资助金额:
    $ 8.92万
  • 项目类别:
Comparing the World Health Organization's ICD-11 Clinical Descriptions and Diagnostic Guidelines to the American Psychiatric Association's DSM-5 in clinical settings: Which classification is best for Canadian health care and Canadian health information?
在临床环境中比较世界卫生组织的 ICD-11 临床描述和诊断指南与美国精神病学协会的 DSM-5:哪种分类最适合加拿大医疗保健和加拿大健康信息?
  • 批准号:
    447530
  • 财政年份:
    2021
  • 资助金额:
    $ 8.92万
  • 项目类别:
    Operating Grants
Histopathological classification of the immune microenvironment of hepatocellular carcinoma including all clinical stages
肝细胞癌免疫微环境的组织病理学分类,包括所有临床阶段
  • 批准号:
    21K15407
  • 财政年份:
    2021
  • 资助金额:
    $ 8.92万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
0238 AI Classification of COVID - 19 studies to ensure clinical guidance and healthcare policy is informed by current meta-analysis of all available evidence
0238 COVID-19 研究的 AI 分类,以确保通过对所有可用证据的当前荟萃分析为临床指导和医疗保健政策提供信息
  • 批准号:
    72665
  • 财政年份:
    2020
  • 资助金额:
    $ 8.92万
  • 项目类别:
    Collaborative R&D
Molecular signature-based classification of circulating tumor cells and its clinical application for refinement of multidisciplinary treatment of pancreatic cancer.
基于分子特征的循环肿瘤细胞分类及其在改进胰腺癌多学科治疗中的临床应用。
  • 批准号:
    19K09209
  • 财政年份:
    2019
  • 资助金额:
    $ 8.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
TP53 variant classification models to improve clinical care of patients
TP53变异分类模型可改善患者的临床护理
  • 批准号:
    nhmrc : GNT1161589
  • 财政年份:
    2019
  • 资助金额:
    $ 8.92万
  • 项目类别:
    Project Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了