Bayesian modelling of hierarchical prior and its updating mechanisms: contextual modulation by cognitive load and sequential dependence
分层先验的贝叶斯建模及其更新机制:认知负荷和顺序依赖性的上下文调制
基本信息
- 批准号:277161151
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Units
- 财政年份:2015
- 资助国家:德国
- 起止时间:2014-12-31 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The aim of project D1 is to uncover the mechanism underlying dynamic contextual calibration in multimodal environments, and to develop a general Bayesian framework describing the prior updating mechanisms in contextual calibration. In particular, we plan to focus on central tendency effects in magnitude estimation. The central tendency effect (also known as the range or regression effect), which has been well documented in the literature (e.g., Helson, 1963; for a review, see Shi, Church, & Meck, 2013), refers to a bias engendered by prior knowledge of the sampled distribution of stimuli presented. Although central tendency effects have been found in various types of sensory estimation, there is at present no consensus on what ranges of statistical information are actually involved in contextual calibration. This issue becomes particularly prominent for multisensory stimuli, given that multiple statistics (priors) are available which are not always consistent with each other. Here, we plan to establish a general computational framework to examine whether the brain uses multiple modality-specific priors or an amodal prior in contextual calibration, and how the brain resolves inconsistencies among priors, as well as how action priors are taken into consideration in magnitude estimation. In addition, we will further develop trial-wise computational Bayesian models (e.g., Kalman filter, particle filters, hierarchical models) to achieve a better prediction of dynamic prior updating and contextual calibration.
项目D1的目的是揭示多模态环境中动态上下文校准的机制,并开发一个通用的贝叶斯框架来描述上下文校准中的先验更新机制。特别是,我们计划集中在震级估计的集中趋势效应。集中趋势效应(也称为范围或回归效应),在文献中已有很好的记载(例如,Helson,1963年;对于综述,参见Shi,Church,& Meck,2013),指的是由所呈现的刺激的采样分布的先验知识产生的偏差。虽然集中趋势效应已被发现在各种类型的感觉估计,目前还没有共识的统计信息的范围实际上涉及的上下文校准。这个问题对于多感官刺激变得特别突出,因为多个统计数据(先验)并不总是相互一致的。在这里,我们计划建立一个通用的计算框架,以检查大脑是否使用多个模态特定的先验或非模态先验的上下文校准,以及大脑如何解决先验之间的不一致,以及如何行动先验被考虑在幅度估计。此外,我们将进一步开发试验式计算贝叶斯模型(例如,卡尔曼滤波器,粒子滤波器,分层模型),以实现更好的预测动态先验更新和上下文校准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr.-Ing. Stefan Glasauer其他文献
Professor Dr.-Ing. Stefan Glasauer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr.-Ing. Stefan Glasauer', 18)}}的其他基金
Multimodal integration in extraocular motoneurons
眼外运动神经元的多模态整合
- 批准号:
274915083 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Research Grants
Vestibuläre Hirnstamm- und Kleinhirnsyndrome: Sensomotorische Dysfunktion des vestibulo-okulären Reflexes
前庭脑干和小脑综合征:前庭眼反射的感觉运动功能障碍
- 批准号:
5411334 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Research Grants
Dysfunctional respiratory processing in patients with post-COVID? – An experimental-computational approach investigating the interaction between breathing behaviour and symptom perception
新冠肺炎后患者的呼吸处理功能失调?
- 批准号:
532480418 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
Improving modelling of compact binary evolution.
- 批准号:10903001
- 批准年份:2009
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Computational Modelling of Perception and Cognition in Help-seeking Youth for Psychosis Prevention
寻求帮助的青少年的感知和认知的计算模型以预防精神病
- 批准号:
489892 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Operating Grants
An adaptive individualization of Hierarchical sleep modelling using Bayesian deep learning
使用贝叶斯深度学习的分层睡眠模型的自适应个体化
- 批准号:
22K12276 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Hierarchical modelling with recent panel data to study the relationship between political trust and political participation.
利用最新面板数据进行分层建模,研究政治信任与政治参与之间的关系。
- 批准号:
2735086 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship
Hierarchical turbulence and mechanical modelling of rotor-airframe interactions
旋翼-机身相互作用的分层湍流和力学建模
- 批准号:
2885833 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship
Nonlinear, but under control: a hierarchical modelling approach to manipulating liquid films
非线性但受控:操纵液膜的分层建模方法
- 批准号:
2588409 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Studentship
Hierarchical Modelling of Complex Ecological Data
复杂生态数据的层次建模
- 批准号:
RGPIN-2016-04432 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Hierarchical Modelling of Complex Ecological Data
复杂生态数据的层次建模
- 批准号:
RGPIN-2016-04432 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Predicting marine species distribution and identifying priority areas for conservation – comparing and coupling food web and Bayesian hierarchical modelling approaches
预测海洋物种分布并确定优先保护区域——比较和耦合食物网和贝叶斯分层建模方法
- 批准号:
414356701 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Research Fellowships
Hierarchical Modelling of Complex Ecological Data
复杂生态数据的层次建模
- 批准号:
493024-2016 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Accelerator Supplements
Hierarchical Modelling of Complex Ecological Data
复杂生态数据的层次建模
- 批准号:
RGPIN-2016-04432 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




