Predicting marine species distribution and identifying priority areas for conservation – comparing and coupling food web and Bayesian hierarchical modelling approaches
预测海洋物种分布并确定优先保护区域——比较和耦合食物网和贝叶斯分层建模方法
基本信息
- 批准号:414356701
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Fellowships
- 财政年份:2019
- 资助国家:德国
- 起止时间:2018-12-31 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Marine ecosystems are impacted by numerous anthropogenic stressors, with overexploitation of resources being among the central threats. A prominent tool to mitigate anthropoogenic pressures and to protect marine biodiversity and ecosystem functioning is the implementation of marine protected areas. For a successful identification and prioritization of suitable conservation areas it is crucial to understand the geographic distribution of biodiversity, target species and essential habitats. A wide variety of statistical modelling approaches for understanding and predicting species distribution have been developed along with different conservation planning algorithms. However, the resulting predictions are always associated with varying degrees of uncertainty; and although the knowledge on the level of uncertainty facilitates decision-making in the face of high risks involved and allows for the adaption of management plans, uncertainty is rarely accounted for in conservation planning tools. Furthermore, most correlative species distribution models and reserve selection algorithms only account for associated environmental factors, while ecological processes and human activities can also drive species distribution. A crucial step towards better predicting the distribution of species and towards an enhanced identification of conservation areas, therefore, encompasses the development of approaches that explicitly account for ecological processes and human activities and that quantify uncertainties associated with resulting conservation plans. Bayesian hierarchical species distribution (B-HSD) modelling is a novel technique that allows the incorporation of spatial random-effect terms, spatial correlation of the variables and the uncertainty of the parameters in the modelling process, resulting in a more realistic and accurate estimation of uncertainty. Ecological processes and human activities can be explicitly considered in mechanistic modelling such as the Ecospace habitat capacity (E-HFC) model. E-HFC allows to spatially drive foraging capacity of species from cumulative physical, oceanographic and environmental effects in conjunction with food web dynamics and fisheries impacts. Furthermore, the ‘objective function’ in Ecospace allows for the identification of effective conservation areas. However, as most ecosystem models and conservation planning tools the E-HFC model does not incorporate the uncertainty related to species distribution. The objective of the project is, thus, to explore the complementarity and applicability of B-HSD models and the E-HFC model for the prediction of species distribution and the identification of priority areas for conservation. For this purpose I use the tropical bay system Chwaka Bay (Tanzania) and its recently developed Ecopath model as case study. With this I attempt to further develop the E-HFC model applicability and to contribute to the development of hybrid approaches for the prediction of species distribution.
海洋生态系统受到许多人为压力因素的影响,资源过度开发是主要威胁之一。建立海洋保护区是减轻海洋生物压力和保护海洋生物多样性和生态系统功能的一个重要工具。为了成功地确定和优先考虑适当的保护区,了解生物多样性、目标物种和基本生境的地理分布至关重要。沿着发展了各种各样的统计建模方法来理解和预测物种分布,并采用了不同的保护规划算法。然而,由此产生的预测总是与不同程度的不确定性;虽然知识的不确定性的水平,促进决策面临的高风险,并允许调整管理计划,不确定性很少占保护规划工具。此外,大多数相关的物种分布模型和保护区选择算法只考虑了相关的环境因素,而生态过程和人类活动也可以驱动物种分布。因此,更好地预测物种分布和更好地确定保护区的一个关键步骤包括制定明确说明生态过程和人类活动的方法,并量化与最终保护计划有关的不确定性。贝叶斯层次物种分布(B-HSD)模型是一种新的技术,它允许在建模过程中纳入空间随机效应项、变量的空间相关性和参数的不确定性,从而更真实和准确地估计不确定性。生态过程和人类活动可以明确地考虑在机械建模,如生态空间栖息地容量(E-HFC)模型。电子氢氟碳化合物可以从累积的物理、海洋和环境影响以及食物网动态和渔业影响中,在空间上驱动物种的觅食能力。此外,生态空间中的“目标函数”允许确定有效的保护区。然而,作为大多数生态系统模型和保护规划工具,E-HFC模型没有纳入与物种分布相关的不确定性。因此,该项目的目标是探索B-HSD模型和E-HFC模型在预测物种分布和确定优先保护区方面的互补性和适用性。为此,我使用的热带海湾系统Chwaka湾(坦桑尼亚)和最近开发的Ecopath模型作为案例研究。有了这个,我试图进一步发展的E-HFC模型的适用性,并有助于混合方法的发展预测的物种分布。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Supporting Spatial Management of Data-Poor, Small-Scale Fisheries With a Bayesian Approach
使用贝叶斯方法支持数据匮乏的小规模渔业的空间管理
- DOI:10.3389/fmars.2021.621961
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Rehren J;Pennino MG;Coll M;Jiddawi N;Muhando C
- 通讯作者:Muhando C
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dr. Jennifer Rehren其他文献
Dr. Jennifer Rehren的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
近海沉积物中Marine Group I古菌新类群的发现、培养及其驱动碳氮循环的机制
- 批准号:92051115
- 批准年份:2020
- 资助金额:81.0 万元
- 项目类别:重大研究计划
基于寨卡病毒NS1和NS5的海洋微生物中抗病毒化合物的发现
- 批准号:81973204
- 批准年份:2019
- 资助金额:56.0 万元
- 项目类别:面上项目
海洋微藻生物固定燃煤烟气中CO2的性能与机理研究
- 批准号:50806049
- 批准年份:2008
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
海洋天然产物Amphidinolide G和H全合成研究
- 批准号:20772148
- 批准年份:2007
- 资助金额:30.0 万元
- 项目类别:面上项目
相似海外基金
RII Track-1: Interface of Change: Building Collaborations to Assess Harvested and Farmed Marine Species Prioritized by Gulf of Alaska Communities Facing Environmental Shifts
RII Track-1:变革界面:建立合作来评估面临环境变化的阿拉斯加湾社区优先考虑的捕捞和养殖海洋物种
- 批准号:
2344553 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Cooperative Agreement
Identification of botanical hHv1 channel blockers as analgesics for neuropathic pain
植物 hHv1 通道阻滞剂作为神经性疼痛镇痛药的鉴定
- 批准号:
10728526 - 财政年份:2023
- 资助金额:
-- - 项目类别:
NSFGEO-NERC: Linking species traits to marine ecosystem functioning
NSFGEO-NERC:将物种特征与海洋生态系统功能联系起来
- 批准号:
NE/X016641/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
Integration of biophysics and deep learning to understand species-specificity of fertilization and the rapid evolution of protein disorder
整合生物物理学和深度学习来了解受精的物种特异性和蛋白质紊乱的快速进化
- 批准号:
10714030 - 财政年份:2023
- 资助金额:
-- - 项目类别:
NSFGEO-NERC: Linking species traits to marine ecosystem functioning
NSFGEO-NERC:将物种特征与海洋生态系统功能联系起来
- 批准号:
2221914 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Zooplankton restarts in a high-latitude marine ecosystem: species-specific recruitment and development in early spring
合作研究:浮游动物在高纬度海洋生态系统中重新启动:早春物种特异性的补充和发育
- 批准号:
2222592 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
A Graphical Species Distribution Model of life history connectivity and multi-scale co-existence of marine species
海洋物种生命史连通性和多尺度共存的图形物种分布模型
- 批准号:
2224702 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Harnessing the power of machine learning algorithms for the detection of marine mammal species in large acoustic datasets
利用机器学习算法的力量来检测大型声学数据集中的海洋哺乳动物物种
- 批准号:
2792769 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship
Deconstructing the ecology of aquatic soundscapes to mitigate the effects of noise pollution on marine species
解构水生声景生态以减轻噪音污染对海洋物种的影响
- 批准号:
RGPIN-2021-03288 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
The history of gene flow and parallel evolution in a marine species radiation
海洋物种辐射中基因流和平行进化的历史
- 批准号:
545810-2020 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral