Justification of a variational construction of approximate slow manifolds for Hamiltonian two-scale systems with strong gyroscopic forces
强陀螺力哈密顿二尺度系统近似慢流形变分构造的论证
基本信息
- 批准号:278124199
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2015
- 资助国家:德国
- 起止时间:2014-12-31 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Two scale systems with strong gyroscopic forces appear in a variety of applications: large-scale flow in atmosphere or ocean subject to the Coriolis force, charged particles subject to a magnetic field, and also in an abstract sense when studying symplectic numerical time integration schemes. Such systems possess an approximately invariant slow manifold, so that trajectories emerging from sufficiently nearby points remain close to it over long time spans. A description of the dynamics on the slow manifold can be obtained via normal form theory; in particular, when the full system is Hamiltonian, this property is preserved through the construction. When the Hamiltonian two scale system is a partial differential equation, a classical normal form construction will typically cause a "loss of derivatives": as the order of accuracy of the construction is increased, the requirements on the smoothness of the initial data will increase, too.In this project, we propose to show that this loss of derivatives can be avoided by a specific construction on the Lagrangian side which transforms the symplectic form and the Hamiltonian simultaneously. We will demonstrate the principle using the non-relativistic limit of the semilinear Klein-Gordon equation as a prototype, work toward obtaining exponential estimates as strong as those classically known in finite dimensions, and generalize the construction to other systems.We expect that this project will lead toward a new view on normal form theory for Hamiltonian partial differential equations which extends to a larger class of multiscale systems.Two scale systems with strong gyroscopic forces appear in a variety of applications: Large-scale flow in atmosphere or ocean subject to theCoriolis force, charged particles subject to a magnetic field, and also in an abstract sense when studying symplectic numerical time integration schemes. Such systems possess an approximately invariant slow manifold, so that trajectories emerging from sufficiently nearby points remain close to it over long time spans. A description of the dynamics on the slow manifold can be obtained via normal form theory; in particular, when the full system is Hamiltonian, this property is preserved through the construction. When the Hamiltonian two scale system is a partial differential equation, a classical normal form construction will typically cause a "loss of derivatives": As the order of accuracy of the construction is increased, the requirements on the smoothness of the initial data will increase, too.In this project, we propose to show that this loss of derivatives can be avoided by a specific construction on the Lagrangian side whichtransforms the symplectic form and the Hamiltonian simultaneously. We will demonstrate the principle using the non-relativistic limit of thesemilinear Klein-Gordon equation as a prototype, work toward obtaining exponential estimates as strong as those classically knownin finite dimensions, and generalize the construction to other systems.We expect that this project will lead toward a new view on normal form theory for Hamiltonian partial differential equations which extends toa larger class of multiscale systems.
两种具有强陀螺力的尺度系统出现在各种应用中:大气或海洋中受科里奥利力作用的大尺度流,受磁场作用的带电粒子,以及在研究辛数值时间积分格式时的抽象意义。这样的系统具有近似不变的慢流形,因此从足够近的点出现的轨迹在很长的时间跨度内保持接近它。慢流形上动力学的描述可以通过范式理论得到;特别是,当整个系统是哈密顿函数时,这个性质通过构造得以保留。当哈密顿二尺度系统是偏微分方程时,经典的范式构造通常会导致“导数损失”:随着构造精度阶数的增加,对初始数据的平滑性要求也会增加。在这个项目中,我们提出可以通过在拉格朗日一侧同时变换辛形式和哈密顿量的特定构造来避免这种导数的损失。我们将使用半线性Klein-Gordon方程的非相对论极限作为原型来证明该原理,努力获得与有限维中经典已知的指数估计一样强的指数估计,并将构造推广到其他系统。我们期望这一项目将为哈密顿偏微分方程的范式理论提供一个新的观点,并将其推广到更大的多尺度系统。两种具有强陀螺力的尺度系统出现在各种应用中:大气或海洋中受柯氏力作用的大尺度流,受磁场作用的带电粒子,以及在研究辛数值时间积分格式时的抽象意义。这样的系统具有近似不变的慢流形,因此从足够近的点出现的轨迹在很长的时间跨度内保持接近它。慢流形上动力学的描述可以通过范式理论得到;特别是,当整个系统是哈密顿函数时,这个性质通过构造得以保留。当哈密顿二尺度系统是偏微分方程时,经典的范式构造通常会导致“导数损失”:随着构造精度阶数的增加,对初始数据的平滑性要求也会增加。在这个项目中,我们打算证明这种导数的损失可以通过在拉格朗日一侧同时变换辛形式和哈密顿量的特定构造来避免。我们将以半线性Klein-Gordon方程的非相对论极限为原型来证明这一原理,努力获得与有限维中经典已知的指数估计一样强的指数估计,并将其构造推广到其他系统。我们期望这一项目将为哈密顿偏微分方程的范式理论提供一个新的观点,并将其推广到更大的多尺度系统。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Comparison of variational balance models for the rotating shallow water equations
旋转浅水方程变分平衡模型的比较
- DOI:10.1017/jfm.2017.292
- 发表时间:2017
- 期刊:
- 影响因子:3.7
- 作者:D.G. Dritschel;G.A. Gottwald;M. Oliver
- 通讯作者:M. Oliver
Quasi-convergence of an implementation of optimal balance by backward-forward nudging
通过向后向前推动实现最优平衡的准收敛
- DOI:10.48550/arxiv.2206.13068
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:G.T. Masur;H. Mohamad;M. Oliver
- 通讯作者:M. Oliver
Numerical integration of functions of a rapidly rotating phase
快速旋转相位函数的数值积分
- DOI:10.1137/19m128658x
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:H. Mohamad;M. Oliver
- 通讯作者:M. Oliver
A direct construction of a slow manifold for a semilinear wave equation of Klein–Gordon type
- DOI:10.1016/j.jde.2019.01.001
- 发表时间:2019-06
- 期刊:
- 影响因子:2.4
- 作者:Haidar Mohamad;M. Oliver
- 通讯作者:Haidar Mohamad;M. Oliver
Optimal Balance via Adiabatic Invariance of Approximate Slow Manifolds
通过近似慢流形的绝热不变性实现最佳平衡
- DOI:10.1137/17m1124644
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:G.A. Gottwald;H. Mohamad;M. Oliver
- 通讯作者:M. Oliver
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Marcel Oliver其他文献
Professor Dr. Marcel Oliver的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Marcel Oliver', 18)}}的其他基金
Practical high-order free-Lagrangian particle methods for rotating barotropic fluids
旋转正压流体的实用高阶自由拉格朗日粒子方法
- 批准号:
88010461 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Research Grants
Numerisches Benchmarking und analytische Studie einer Klasse konservativer Modelle zur effizienten Simulation großskaliger geophysikalischer Strömungen im Grenzfall kleiner Rossby-Zahl
小罗斯贝数极限下高效模拟大规模地球物理流的一类保守模型的数值基准和分析研究
- 批准号:
62829851 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
Data Complexity and Uncertainty-Resilient Deep Variational Learning
数据复杂性和不确定性弹性深度变分学习
- 批准号:
DP240102050 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Projects
Neural Networks for Stationary and Evolutionary Variational Problems
用于稳态和进化变分问题的神经网络
- 批准号:
2424801 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Non-Local Variational Problems with Applications to Data Science
非局部变分问题及其在数据科学中的应用
- 批准号:
2307971 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Nonlocal Variational Problems from Physical and Biological Models
物理和生物模型的非局部变分问题
- 批准号:
2306962 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Variational Optimal Transport Methods for Nonlinear Filtering
非线性滤波的变分最优传输方法
- 批准号:
2318977 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
LEAPS-MPS: Time-Discrete Regularized Variational Model for Brittle Fracture in Novel Strain-Limiting Elastic Solids
LEAPS-MPS:新型应变限制弹性固体中脆性断裂的时间离散正则化变分模型
- 批准号:
2316905 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Variational Inference for Intractable and Misspecified State Space Models
棘手且错误指定的状态空间模型的变分推理
- 批准号:
DE230100029 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Discovery Early Career Researcher Award
Development of Parametric Estimation Based on Variational Divergence
基于变分散度的参数估计的发展
- 批准号:
23K16849 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Scalar curvature and geometric variational problems
标量曲率和几何变分问题
- 批准号:
2303624 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical analysis of variational problems appearing in several nonlinear Schrodinger equations
几个非线性薛定谔方程中出现的变分问题的数学分析
- 批准号:
23KJ0293 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows