Image modelling, inpainting, decomposition and restoration by redundant representations and variational calculus
通过冗余表示和变分演算进行图像建模、修复、分解和恢复
基本信息
- 批准号:27869400
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2006
- 资助国家:德国
- 起止时间:2005-12-31 至 2009-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project will address investigations on the usage of frames (stable redundant nonorthogonal expansions in Banach spaces) and their use in numerical applications in the field of inverse problems (inpainting, restoration and decomposition tasks in image processing). In inverse problems, and in particular in image processing, one of the very first tasks is to identify the underlying model function spaces that embed the problem into the right setting. When dealing with spaces of (special) bounded variation functions - which is a very favoured space in image processing - the problem is often that the associated PDE (Euler Lagrange) schemes to approximate the solution are numerically very intensive and time consuming. It would be desirable to bypass this drawback and to derive the solution in some numerically thrifty way. Moreover, in certain applications the solution is often assumed to have a (super) sparse expansion, or it is required to express the solution in a very space saving way. To this end, we aim to answer here the question on how we can characterize the function spaces and variational problems under consideration and/or how we can replace them by other easier to handle frameworks (e.g. embeddings of SBV functions into Besov and oscillation spaces). In particular, we ask for proper characterizations of the underlying function spaces (or its replacements) by means of frames that allow an adequate discretization/decomposition. Once this is achieved, we may rewrite the variational problems (where we hope being not too far off the original problem) and aim to construct schemes for the frame coefficients that easily provide tools to derive the solution numerically. Here we essentially focus on two applications: firstly, solving nonlinear problems in its variational form where the solution is assumed to have (super) sparse frame expansion and, secondly, investigating the use of frames for modelling free discontinuity problems such as Mumford Shah like functionals as they appear in the field of image inpainting/restoration.
该项目将研究框架(Banach空间中的稳定冗余非正交展开)的使用及其在逆问题(图像处理中的修复,恢复和分解任务)领域的数值应用。在反问题中,特别是在图像处理中,最重要的任务之一是识别将问题嵌入正确设置的底层模型函数空间。当处理(特殊)有界变差函数空间时-这是图像处理中非常受欢迎的空间-问题通常是用于近似解的相关PDE(Euler拉格朗日)方案在数值上非常密集且耗时。最好能避开这个缺点,用一些数值上节省的方法来求得解。此外,在某些应用中,通常假设解具有(超)稀疏展开,或者需要以非常节省空间的方式表达解。为此,我们的目标是在这里回答这样一个问题,即我们如何表征所考虑的函数空间和变分问题,以及/或者我们如何用其他更容易处理的框架(例如,将SBV函数嵌入Besov和振荡空间)来代替它们。特别是,我们要求适当的特征的基础功能空间(或其替代品)的框架,允许适当的离散化/分解。一旦实现了这一点,我们可以重写变分问题(我们希望不会太远离原来的问题),并致力于为框架系数构造方案,这些方案可以轻松地提供数值求解的工具。在这里,我们主要集中在两个应用程序:首先,解决非线性问题的变分形式的解决方案是假设有(超)稀疏帧扩展,其次,调查使用框架建模自由不连续性问题,如芒福德沙阿一样的泛函,因为它们出现在图像修复/恢复领域。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Efficient object tracking by condentional and cascaded image sensing
通过冷凝和级联图像传感进行高效的物体跟踪
- DOI:10.1016/j.csi.2011.02.001
- 发表时间:2011
- 期刊:
- 影响因子:0
- 作者:M. Rätsch;C. Blumer;T. Vetter;G. Teschke
- 通讯作者:G. Teschke
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Gerd Teschke其他文献
Professor Dr. Gerd Teschke的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Gerd Teschke', 18)}}的其他基金
Inverse Problems, Sparse reconstructions, Convergence rates, Optimization
反演问题、稀疏重建、收敛速度、优化
- 批准号:
33811364 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Research Grants
Frame-basierte Verfahren zur Inversion meteorologischer Integralgleichungen
基于框架的气象积分方程反演方法
- 批准号:
5442057 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Research Grants
Wavelet- and Frame-based treatments of variational problems with applications in geophysical data processing (in particular ocean margin analysis)
基于小波和框架的变分问题处理及其在地球物理数据处理(特别是海洋边缘分析)中的应用
- 批准号:
5332810 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Priority Programmes
相似国自然基金
Improving modelling of compact binary evolution.
- 批准号:10903001
- 批准年份:2009
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Macroeconomic and Financial Modelling in an Era of Extremes
极端时代的宏观经济和金融模型
- 批准号:
DP240101009 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Projects
Population genomic methods for modelling bacterial pathogen evolution
用于模拟细菌病原体进化的群体基因组方法
- 批准号:
DE240100316 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Early Career Researcher Award
Anti-infective therapeutics and predictive modelling to tackle Staphylococcus aureus disease
应对金黄色葡萄球菌疾病的抗感染疗法和预测模型
- 批准号:
EP/X022935/2 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship
Hybrid AI and multiscale physical modelling for optimal urban decarbonisation combating climate change
混合人工智能和多尺度物理建模,实现应对气候变化的最佳城市脱碳
- 批准号:
EP/X029093/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship
Mechanistic Multiscale Modelling Of Drug Release from Immediate Release Tablets
速释片剂药物释放的机制多尺度建模
- 批准号:
EP/X032019/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
PIDD-MSK: Physics-Informed Data-Driven Musculoskeletal Modelling
PIDD-MSK:物理信息数据驱动的肌肉骨骼建模
- 批准号:
EP/Y027930/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship
UQ4FM: Uncertainty Quantification for Flood Modelling
UQ4FM:洪水建模的不确定性量化
- 批准号:
EP/Y000145/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Advanced Modelling Platform with Moving Ventricular Walls for Increasing Speed to Market of Heart Pumps
具有移动心室壁的先进建模平台可加快心脏泵的上市速度
- 批准号:
10071797 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Collaborative R&D
M2DESCO - Computational Multimode Modelling Enabled Design of Safe & Sustainable Multi-Component High-Entropy Coatings
M2DESCO - 计算多模式建模支持安全设计
- 批准号:
10096988 - 财政年份:2024
- 资助金额:
-- - 项目类别:
EU-Funded
SMILE - Semantic Modelling of Intent through Large-language Evaluations
SMILE - 通过大语言评估进行意图语义建模
- 批准号:
10097766 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Collaborative R&D














{{item.name}}会员




