Inverse Problems, Sparse reconstructions, Convergence rates, Optimization

反演问题、稀疏重建、收敛速度、优化

基本信息

项目摘要

The combination of sparse signal recovery and inverse ill-posed problems is a new research field that is under consideration in this project. In particular, we shall be concerned with the development of new regularizing algorithms that solve nonlinear inverse ill-posed problems with sparsity constraints. The concept of such algorithms but for linear problems in its Tikhonov variational form with sparsity constraints was under consideration several years and finally solved two years ago in [DDDM04]. Quite recently, in 2005 the applicants have opened the door to algorithms for nonlinear ill-posed inverse problems with mixed sparsity and smoothness constraints. Very first results are achieved, but there are still many open questions. Thus the first goal of this project is to glue the theories of sparse signal recovery and nonlinear inverse ill-posed problems tightly together and to built a first fundament for an abundant variety of applications. Of interest in this project are three applications, coming from the analysis of the dynamics of cellular networks, medical imaging and rotor dynamics. These three applications provide nonlinear inverse problems in which the solution is assumed to have a sparse expansion in dictionaries of different building blocks. Thus the second goal is to provide algorithms to reasonably solve the mentioned inverse problems and to overcome therewith the significant deficiencies in current used approaches,In principle, the algorithms to be developed amount to be very likely iterative schemes (so far, we have only considered the easiest cases). This defines essentially the course of this project: development of the schemes, investigation of convergence properties, very likely an acceleration of the schemes, analysis of resulting convergence rates, establishment of regularization theory (parameter rules), and, finally, in collaboration with the project partners, an implementation of the algorithms such that the developed mathematical machineries can be really used.
将稀疏信号恢复与逆不适定问题相结合是本项目正在考虑的一个新的研究领域。特别是,我们将关注新的正则化算法,解决非线性逆不适定问题的稀疏约束的发展。这种算法的概念,但线性问题的吉洪诺夫变分形式与稀疏约束正在考虑几年,终于解决了两年前在[DDDM04]。最近,在2005年,申请人已经打开了大门,算法的非线性不适定的反问题与混合稀疏性和光滑性约束。取得了初步成果,但仍有许多悬而未决的问题。因此,本项目的首要目标是将稀疏信号恢复和非线性逆不适定问题的理论紧密结合在一起,为各种各样的应用奠定基础。在这个项目中感兴趣的是三个应用程序,来自蜂窝网络,医学成像和转子动力学的动力学分析。这三个应用程序提供了非线性反问题,其中的解决方案被假定为具有稀疏扩展字典的不同的积木。因此,第二个目标是提供算法来合理地解决所提到的逆问题,并克服目前使用的方法中的重大缺陷。原则上,要开发的算法量是非常可能的迭代方案(到目前为止,我们只考虑了最简单的情况)。这基本上定义了这个项目的过程:方案的开发,收敛特性的调查,很可能是方案的加速,所得收敛率的分析,正则化理论(参数规则)的建立,最后,与项目合作伙伴合作,实现算法,以便开发的数学机器可以真正使用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Gerd Teschke其他文献

Professor Dr. Gerd Teschke的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Gerd Teschke', 18)}}的其他基金

Image modelling, inpainting, decomposition and restoration by redundant representations and variational calculus
通过冗余表示和变分演算进行图像建模、修复、分解和恢复
  • 批准号:
    27869400
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Frame-basierte Verfahren zur Inversion meteorologischer Integralgleichungen
基于框架的气象积分方程反演方法
  • 批准号:
    5442057
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Wavelet- and Frame-based treatments of variational problems with applications in geophysical data processing (in particular ocean margin analysis)
基于小波和框架的变分问题处理及其在地球物理数据处理(特别是海洋边缘分析)中的应用
  • 批准号:
    5332810
  • 财政年份:
    2001
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes

相似海外基金

Learnable Sparse Coding and Its Application to Inverse Problems
可学习的稀疏编码及其在反问题中的应用
  • 批准号:
    21K17766
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Numerical Solution of Large-Scale Sparse Linear Systems Arising from Problems with Constraints
由约束问题引起的大规模稀疏线性系统的数值求解
  • 批准号:
    RGPIN-2017-04491
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Numerical Solution of Large-Scale Sparse Linear Systems Arising from Problems with Constraints
由约束问题引起的大规模稀疏线性系统的数值求解
  • 批准号:
    RGPIN-2017-04491
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Numerical Solution of Large-Scale Sparse Linear Systems Arising from Problems with Constraints
由约束问题引起的大规模稀疏线性系统的数值求解
  • 批准号:
    RGPIN-2017-04491
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Fast and Robust Algorithms for Signal Recovery from Underdetermined Measurements: Generalized Sparse Fourier Transforms, Inverse Problems, and Density Estimation
用于从欠定测量中恢复信号的快速稳健算法:广义稀疏傅里叶变换、反演问题和密度估计
  • 批准号:
    1912706
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Numerical Solution of Large-Scale Sparse Linear Systems Arising from Problems with Constraints
由约束问题引起的大规模稀疏线性系统的数值求解
  • 批准号:
    RGPIN-2017-04491
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Statistical mechanics and sparse modeling approach to large-scale inverse problems
大规模反问题的统计力学和稀疏建模方法
  • 批准号:
    18K11463
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Numerical Solution of Large-Scale Sparse Linear Systems Arising from Problems with Constraints
由约束问题引起的大规模稀疏线性系统的数值求解
  • 批准号:
    RGPIN-2017-04491
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
High order accuracy WENO methods for high dimensional problems on sparse grids
稀疏网格上高维问题的高阶精度 WENO 方法
  • 批准号:
    1620108
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CNIC: US-India Collaborative Research Linking Remote Sensing, Citizen Science, and Robotics to Address Critical Environmental Problems in Data Sparse Regions
CNIC:美印合作研究将遥感、公民科学和机器人技术联系起来,解决数据稀疏地区的关键环境问题
  • 批准号:
    1427420
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了