Dynamic and high precision sensor positioning in large measuring ranges by means of an inverse measuring concept

通过逆向测量概念在大测量范围内进行动态高精度传感器定位

基本信息

项目摘要

There are no limits to the technical challenges involved in measuring and positioning in large traverse ranges with nanometer to sub-nanometer precision. Semiconductor production is facing new challenges with wafers up to 700 mm in size and due to the constantly decreasing dimensions of the structures to be produced (currently in the sub-10 nm range). Already the 450 mm EUV technology requires ø 700 mm ultra-precise mirror optics with atomic precision. The inverse measuring concept with Abbe error compensation developed in the first project period represents a possible way out of the problem of the growing masses to be moved, while the requirements for positioning accuracy are constantly increasing. The measuring mirrors are one key component in any three-dimensional interferometric measuring or positioning task. The mirror surfaces represent the reference system of the entire structure and thus decisively determine the achievable measurement uncertainty. For this reason, the actual topography of the mirror surfaces must be exactly known in order to be able to correct their flatness deviations mathematically. Although precision optics production has developed enormously in recent years, both the achievable manufacturing tolerances and the measuring possibilities are still limited for the necessary large mirror surfaces. The desired increase in accuracy of the inverse concept therefore requires additional measuring technology in the actual measuring machine. For this purpose, the inverse measuring concept has to be extended for the ability for direct measurement of the mirror surfaces in the installed situation. This provides an option for regular or even permanent determination of the mirror topography and thus its arithmetical correction. In this way, the problem of a topography changing unknown in time, whether due to mechanical stresses, thermal strains or changes in the force flow within the machine, can be effectively countered. The flatness deviations of the mirror surfaces are to be recorded by additional measuring systems during the scan of the mirror surfaces and then be used directly for the correction of the length and angle measured values.
在纳米到亚纳米精度的大导线范围内进行测量和定位是没有限制的技术挑战。半导体生产正面临着新的挑战,晶圆的尺寸高达700毫米,并且由于要生产的结构尺寸不断减小(目前在10纳米以下范围内)。450mm的EUV技术已经需要700mm的超精密光学反射镜,具有原子精度。第一期项目提出的带Abbe误差补偿的逆测量概念,为解决待动质量不断增长,而对定位精度要求不断提高的问题提供了可能的途径。测量镜是任何三维干涉测量或定位任务的关键部件。镜面代表了整个结构的参照系,从而决定性地决定了可实现的测量不确定度。由于这个原因,必须准确地知道镜面的实际地形,以便能够在数学上纠正它们的平面偏差。尽管近年来精密光学生产取得了巨大的发展,但对于必要的大镜面,可实现的制造公差和测量可能性仍然有限。因此,在实际测量机中需要额外的测量技术来提高逆概念的精度。为此,必须扩展逆测量概念,以便在安装情况下直接测量镜面的能力。这就提供了一种定期甚至永久确定镜面地形的方法,从而可以对其进行算术校正。通过这种方式,无论是由于机械应力,热应变还是机器内部力流的变化,都可以有效地应对地形变化未知的问题。镜面的平面度偏差在镜面扫描时由附加的测量系统记录,然后直接用于长度和角度测量值的校正。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Dynamic sensor positioning in large measuring volumes by an inverse kinematic concept
通过逆运动学概念在大测量体积中进行动态传感器定位
D6.4 Fundamentals of Dynamic Sensor Positioning with Nanoscale Accuracy by an Inverse Kinematic Concept
D6 4 通过逆运动学概念实现纳米级精度动态传感器定位的基础知识
  • DOI:
    10.5162/smsi2020/d6.4
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    G. Straube;S. Fischer Calderón;I. Ortlepp;E. Manske
  • 通讯作者:
    E. Manske
A Heterodyne Interferometer with Separated Beam Paths for High-Precision Displacement and Angular Measurements
  • DOI:
    10.1007/s41871-021-00101-x
  • 发表时间:
    2021-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    G. Straube;Juan Sebastian Fischer Calderón;I. Ortlepp;R. Füßl;E. Manske
  • 通讯作者:
    G. Straube;Juan Sebastian Fischer Calderón;I. Ortlepp;R. Füßl;E. Manske
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Roland Füßl其他文献

Professor Dr.-Ing. Roland Füßl的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Roland Füßl', 18)}}的其他基金

Dynamic and high precision sensor and tool positioning in large measuring volume with the aid of an inverse measurement concept - transfer project
借助逆向测量概念,动态高精度传感器和工具在大测量体积中定位 - 传输项目
  • 批准号:
    504463968
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants (Transfer Project)

相似国自然基金

High-precision force-reflected bilateral teleoperation of multi-DOF hydraulic robotic manipulators
  • 批准号:
    52111530069
  • 批准年份:
    2021
  • 资助金额:
    10 万元
  • 项目类别:
    国际(地区)合作与交流项目

相似海外基金

SensorGROW - an intuitive, cost effective and scalable precision growing platform, powered by a network of unified agri-sensor nodes
SensorGROW - 直观、经济高效且可扩展的精准种植平台,由统一农业传感器节点网络提供支持
  • 批准号:
    10095990
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
A High Precision Laser-based Mobile SEnsor for Detection of Trace Amounts of Hydrogen
用于检测痕量氢气的高精度激光移动传感器
  • 批准号:
    EP/Y034457/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Optimization of electromechanical monitoring of engineered heart tissues
工程心脏组织机电监测的优化
  • 批准号:
    10673513
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
The role of VSNL1 in human heart rate regulation
VSNL1在人体心率调节中的作用
  • 批准号:
    10750747
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Validating Sensor-based Approaches for Monitoring Eating Behavior and Energy Intake by Accounting for Real-World Factors that Impact Accuracy and Acceptability
通过考虑影响准确性和可接受性的现实因素来验证基于传感器的饮食行为和能量摄入监测方法
  • 批准号:
    10636986
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Targeting GPR84 to Overcome Macrophage Mediated Resistance to Immunotherapy
靶向 GPR84 克服巨噬细胞介导的免疫治疗耐药性
  • 批准号:
    10660122
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Longitudinal Personalized Dynamics Among Anorexia Nervosa Symptoms, Core Dimensions, and Physiology Predicting Suicide Risk
神经性厌食症症状、核心维度和预测自杀风险的生理学之间的纵向个性化动态
  • 批准号:
    10731597
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
A wearable device for continuous monitoring of methadone
用于连续监测美沙酮的可穿戴设备
  • 批准号:
    10787069
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Scalable and Interoperable framework for a clinically diverse and generalizable sepsis Biorepository using Electronic alerts for Recruitment driven by Artificial Intelligence (short title: SIBER-AI)
使用人工智能驱动的招募电子警报的临床多样化和通用脓毒症生物库的可扩展和可互操作框架(简称:SIBER-AI)
  • 批准号:
    10576015
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Harnessing cooperativity to achieve high-precision in vivo measurements
利用协作性实现高精度体内测量
  • 批准号:
    10745250
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了