Dynamic and high precision sensor and tool positioning in large measuring volume with the aid of an inverse measurement concept - transfer project

借助逆向测量概念,动态高精度传感器和工具在大测量体积中定位 - 传输项目

基本信息

项目摘要

Increasingly large measurement objects and at the same time increasing demands on resolution and precision represent a current challenge in nanomeasurement technology. The global trend towards increasing precision in the nanometre range, greater complexity of structures to be measured in ever larger measuring and processing ranges of several hundred millimetres is unmistakable. The main driver is certainly nanolithography with an almost unimaginable market potential. The concept for a nanomeasuring machine that meets the requirements of these technological developments could be worked out within the framework of the DFG standard procedure "Dynamic and highly accurate sensor positioning in large measuring volumes using an inverse measuring concept". Furthermore, the scientific basics for the construction of such a large-volume nanopositioning and nanomeasuring system have been created. The large and heavy masses of the measuring object and the reference surface mirror are fixed in measuring machines according to the inverse concept, and a movable, fibre-optic-coupled, compact, interferometric sensor head realises the 3-dimensional precision measurement. This minimises the moving mass and enables high measurement dynamics. The inverse approach for the implementation of nanomeasuring machines is fundamentally new and opens up, on the one hand, the penetration of higher accuracy ranges and, on the other hand, the realisation of machines with very large ranges of motion. Through the interferometric measurement of six degrees of freedom, a minimal Abbe error is achieved. With a further six interferometer axes, the surface topography of the reference mirrors can be determined quasi-permanently, with nanometre precision in the machine itself. The great advantage of this approach is that any changes in the topography of the mirrors can be detected promptly and thus the correction matrices can be constantly updated. Based on the knowledge gained in the underlying DFG-project a prototype of a measuring machine based on the inverse concept is now to be developed within the framework of the transfer project together with the application partner SIOS Meßtechnik GmbH. In order to realise measuring times within an acceptable range despite large measuring objects and ranges of motion, the focus of the development is not only on the achievable precision but also on a high dynamic of the positioning. Furthermore, it is to be proven that the inverse concept can be realised in a significantly more compact manner, with greater long-term stability, provides better measurement uncertainty and, despite the large number of 12 laser axes (and two HeNe lasers in a master-slave configuration), can be manufactured significantly more economically than measuring machines according to the classic moving-stage principle. The final step is the metrological qualification of the measuring machine, the core of which is the verification of the achievable precision of the positioning.
越来越大的测量对象,同时对分辨率和精度的要求也越来越高,这是当前纳米测量技术面临的一个挑战。全球趋势是在纳米范围内提高精度,在数百毫米的更大测量和处理范围内测量更复杂的结构,这是毋庸置疑的。主要驱动力当然是具有几乎难以想象的市场潜力的纳米光刻技术。满足这些技术发展要求的纳米测量机的概念可以在DFG标准程序的框架内制定出来,该程序的框架是使用反向测量概念在大测量体积中动态和高精度地定位传感器。此外,还为构建这样一个大体积的纳米定位和纳米测量系统奠定了科学基础。测量对象和基准面镜的大质量和大质量按逆概念固定在测量机中,由可移动的光纤耦合的紧凑型干涉传感头实现三维精密测量。这最大限度地减少了移动质量,实现了高测量动力学。实现纳米测量机器的反向方法从根本上是新的,一方面开辟了更高精度范围的渗透,另一方面实现了具有非常大运动范围的机器。通过对六个自由度的干涉测量,得到了最小的阿贝误差。再加上六个干涉仪轴,参考镜的表面形貌可以准永久地确定,机器本身的精度为纳米级。这种方法的最大优点是可以迅速检测到反射镜表面的任何变化,从而可以不断地更新校正矩阵。基于在基础DFG项目中获得的知识,现在将在转让项目的框架内与应用合作伙伴SIOS Me?Technik GmbH一起开发基于反向概念的测量机原型。为了在测量对象和运动范围大的情况下,在可接受的范围内实现测量时间,开发的重点不仅是可实现的精度,而且是高动态的定位。此外,要证明的是,反向概念可以以更紧凑的方式实现,具有更大的长期稳定性,提供更好的测量不确定度,尽管有大量的12个激光轴(和两个主从配置的HENE激光器),但根据经典的移动工作台原理,可以显著比测量机器更经济地制造。最后一步是对测量机进行计量鉴定,其核心是对定位的可实现精度进行验证。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Roland Füßl其他文献

Professor Dr.-Ing. Roland Füßl的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Roland Füßl', 18)}}的其他基金

Dynamic and high precision sensor positioning in large measuring ranges by means of an inverse measuring concept
通过逆向测量概念在大测量范围内进行动态高精度传感器定位
  • 批准号:
    279458870
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

High-precision force-reflected bilateral teleoperation of multi-DOF hydraulic robotic manipulators
  • 批准号:
    52111530069
  • 批准年份:
    2021
  • 资助金额:
    10 万元
  • 项目类别:
    国际(地区)合作与交流项目

相似海外基金

SensorGROW - an intuitive, cost effective and scalable precision growing platform, powered by a network of unified agri-sensor nodes
SensorGROW - 直观、经济高效且可扩展的精准种植平台,由统一农业传感器节点网络提供支持
  • 批准号:
    10095990
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
A High Precision Laser-based Mobile SEnsor for Detection of Trace Amounts of Hydrogen
用于检测痕量氢气的高精度激光移动传感器
  • 批准号:
    EP/Y034457/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Optimization of electromechanical monitoring of engineered heart tissues
工程心脏组织机电监测的优化
  • 批准号:
    10673513
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
The role of VSNL1 in human heart rate regulation
VSNL1在人体心率调节中的作用
  • 批准号:
    10750747
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Validating Sensor-based Approaches for Monitoring Eating Behavior and Energy Intake by Accounting for Real-World Factors that Impact Accuracy and Acceptability
通过考虑影响准确性和可接受性的现实因素来验证基于传感器的饮食行为和能量摄入监测方法
  • 批准号:
    10636986
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Targeting GPR84 to Overcome Macrophage Mediated Resistance to Immunotherapy
靶向 GPR84 克服巨噬细胞介导的免疫治疗耐药性
  • 批准号:
    10660122
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Longitudinal Personalized Dynamics Among Anorexia Nervosa Symptoms, Core Dimensions, and Physiology Predicting Suicide Risk
神经性厌食症症状、核心维度和预测自杀风险的生理学之间的纵向个性化动态
  • 批准号:
    10731597
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
A wearable device for continuous monitoring of methadone
用于连续监测美沙酮的可穿戴设备
  • 批准号:
    10787069
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Scalable and Interoperable framework for a clinically diverse and generalizable sepsis Biorepository using Electronic alerts for Recruitment driven by Artificial Intelligence (short title: SIBER-AI)
使用人工智能驱动的招募电子警报的临床多样化和通用脓毒症生物库的可扩展和可互操作框架(简称:SIBER-AI)
  • 批准号:
    10576015
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Harnessing cooperativity to achieve high-precision in vivo measurements
利用协作性实现高精度体内测量
  • 批准号:
    10745250
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了