Longitudinal Personalized Dynamics Among Anorexia Nervosa Symptoms, Core Dimensions, and Physiology Predicting Suicide Risk

神经性厌食症症状、核心维度和预测自杀风险的生理学之间的纵向个性化动态

基本信息

  • 批准号:
    10731597
  • 负责人:
  • 金额:
    $ 78.21万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2028-06-30
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY/ABSTRACT Anorexia nervosa (AN) is a severe mental illness with the highest mortality rate of any psychiatric disorder, with suicide as the second leading cause of death. Despite extremely high rates of suicide, risk factors for suicidal ideation (SI) and behaviors/attempts (SA) in this high-risk population are not well understood. While there is evidence that threat reactivity, stress-response, over-arousal, emotion dysregulation, and agitation contribute to suicide risk, the dynamic relations among these processes have not been characterized on a comprehensive, momentary basis. Our scientific premise, developed from our past work, is that the application of ideation-to-action and network theories will enable the identification of dynamic longitudinal interactions among core dimensions (e.g., arousal, threat), AN symptoms, and SI/SA both between and within individuals. Our study goals are to (1) identify symptom and dimension risk interactions of co-occurring AN and SI/SA between and within persons, (2) differentiate which risk factors predict SI vs SA and (3) test if these risk factors predict onset of SI/SA. These goals will ultimately identify which factors should be targeted in novel prevention and treatment efforts. We will use a multiple units of analysis approach, combined with novel, cutting-edge advances in suicide and network science. We will collect intensive real-time data on AN and suicide behaviors, anxiety, over-arousal, emotion regulation, and agitation using mobile technology, as well as psychophysiological assessment of emotion regulation (via heart-rate variability) and arousal (via electrodermal activity characterizing over-arousal and acceleration characterizing the sleep-wake cycle), from 230 individuals with a diagnosis of AN/Atypical AN (AAN). At 1-month, 6-month, and one year follow-up we will test if individual risk factors predict SI/SA. We expect 35-58 participants will have SA across our study period. Specific aims are to (1) test which symptoms and dimensions across time and between-persons maintain comorbid SI/SA and AN symptoms, (2) develop personalized network models to identify which suicide and AN features predict SI/SA within individuals and an exploratory aim (3) to test if there are differences between AN and AAN. The proposed research uses highly innovative methods, combining intensive longitudinal data collection methods, measurement of physiological data via wearable sensor technology, and novel advances in network science to answer previously unresolvable questions pinpointing which individual risk factors contribute to suicide outcomes. The proposed research has clinical impact. If we identify patterns that contribute to suicide risk, these data will provide a model of personalized medicine for the entire field of psychiatry, as well as providing novel intervention targets to prevent and treat AN spectrum illnesses. Additionally, the algorithms we develop can be used in both (a) clinician friendly software to identify treatment targets to prevent SI/SA and (b) in wearable alert devices that can disrupt SA before it occurs.
项目总结/摘要 神经性厌食症(AN)是一种严重的精神疾病,在所有精神疾病中死亡率最高, 自杀是第二大死因。尽管自杀率极高,但自杀的风险因素 在这个高风险人群中的想法(SI)和行为/尝试(SA)还没有得到很好的理解。虽然 有证据表明,威胁反应,压力反应,过度觉醒,情绪失调,和激动有助于 到自杀风险,这些过程之间的动态关系还没有在一个 全面的,瞬间的基础上。我们的科学前提,从我们过去的工作发展而来,是应用 概念到行动和网络理论的结合将使我们能够识别动态的纵向相互作用 在芯尺寸(例如,唤醒,威胁),AN症状和个体之间和个体内的SI/SA。 我们的研究目标是(1)识别同时发生的AN和SI/SA的症状和维度风险相互作用 人与人之间和人与人之间,(2)区分哪些风险因素预测SI vs SA,(3)测试这些风险因素是否 预测SI/SA的发作。这些目标将最终确定新的预防措施应针对哪些因素 治疗的努力。我们将采用多单元的分析方法,结合新颖、前沿的 自杀和网络科学的进步我们将收集关于AN和自杀行为的密集的实时数据, 焦虑、过度兴奋、情绪调节和激动使用移动的技术,以及 情绪调节(通过心率变异性)和唤醒(通过 皮肤电活动表征过度觉醒和加速表征睡眠-觉醒周期),从 230例诊断为AN/非典型AN(AAN)的患者。在1个月、6个月和1年随访时, 测试个体风险因素是否预测SI/SA。我们预计在整个研究期间将有35-58名参与者患有SA。 具体目标是(1)测试跨时间和人与人之间的症状和维度 共病SI/SA和AN症状,(2)开发个性化的网络模型,以确定哪些自杀和AN 特征预测个体内的SI/SA和探索性目标(3)以测试AN之间是否存在差异 和AAN。拟议的研究使用高度创新的方法,结合密集的纵向数据 收集方法,通过可穿戴传感器技术测量生理数据,以及 网络科学来回答以前无法解决的问题, 会导致自杀这项研究具有临床意义。如果我们识别出 有助于自杀风险,这些数据将提供一个模型的个性化医疗的整个领域 精神病学,以及提供新的干预目标,以预防和治疗AN谱疾病。 此外,我们开发的算法可以用于(a)临床医生友好的软件,以确定治疗 目标是防止SI/SA和(B)可穿戴警报设备,可以在SA发生之前破坏SA。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Cheri Alicia Levinson其他文献

Cheri Alicia Levinson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Cheri Alicia Levinson', 18)}}的其他基金

Personalized Networks and Sensor Technology Algorithms of Eating Disorder Symptoms Predicting Eating Disorder Outcomes
个性化网络和传感器技术饮食失调症状的算法预测饮食失调的结果
  • 批准号:
    10652078
  • 财政年份:
    2023
  • 资助金额:
    $ 78.21万
  • 项目类别:
Innovations in Personalizing Treatment for Eating Disorders Using Idiographic Methods and the Impact of Personalization on Psychological, Physical, and Sociodemographic Outcomes
使用具体方法对饮食失调进行个性化治疗的创新以及个性化对心理、身体和社会人口学结果的影响
  • 批准号:
    10685796
  • 财政年份:
    2023
  • 资助金额:
    $ 78.21万
  • 项目类别:
Facing Eating Disorder Fears for Anorexia Nervosa: A Virtual Relapse Prevention Program Targeted at Approach and Avoidance Behaviors
面对饮食失调对神经性厌食症的恐惧:针对接近和回避行为的虚拟复发预防计划
  • 批准号:
    10425019
  • 财政年份:
    2022
  • 资助金额:
    $ 78.21万
  • 项目类别:
Facing Eating Disorder Fears for Anorexia Nervosa: A Virtual Relapse Prevention Program Targeted at Approach and Avoidance Behaviors
面对饮食失调对神经性厌食症的恐惧:针对接近和回避行为的虚拟复发预防计划
  • 批准号:
    10611448
  • 财政年份:
    2022
  • 资助金额:
    $ 78.21万
  • 项目类别:
A Pilot Investigation of Network-Informed Personalized Treatment for Eating Disorders versus Enhanced Cognitive Behavioral Therapy and Dynamic Mechanisms of Change
饮食失调的网络信息个性化治疗与增强认知行为疗法和动态变化机制的试点研究
  • 批准号:
    10612256
  • 财政年份:
    2022
  • 资助金额:
    $ 78.21万
  • 项目类别:
A Pilot Randomized Control Trial of a Relapse Prevention Online Exposure Protocol for Eating Disorders and Mechanisms of Change
针对饮食失调和变化机制的复发预防在线暴露协议的试点随机对照试验
  • 批准号:
    10579874
  • 财政年份:
    2021
  • 资助金额:
    $ 78.21万
  • 项目类别:
A Pilot Randomized Control Trial of a Relapse Prevention Online Exposure Protocol for Eating Disorders and Mechanisms of Change
针对饮食失调和变化机制的复发预防在线暴露协议的试点随机对照试验
  • 批准号:
    10372099
  • 财政年份:
    2021
  • 资助金额:
    $ 78.21万
  • 项目类别:
A Pilot Investigation of Network-Informed Personalized Treatment for Eating Disorders versus Enhanced Cognitive Behavioral Therapy and Dynamic Mechanisms of Change
饮食失调的网络信息个性化治疗与增强认知行为疗法和动态变化机制的试点研究
  • 批准号:
    10542414
  • 财政年份:
    2021
  • 资助金额:
    $ 78.21万
  • 项目类别:
A Pilot Investigation of Network-Informed Personalized Treatment for Eating Disorders versus Enhanced Cognitive Behavioral Therapy and Dynamic Mechanisms of Change
饮食失调的网络信息个性化治疗与增强认知行为疗法和动态变化机制的试点研究
  • 批准号:
    10347759
  • 财政年份:
    2021
  • 资助金额:
    $ 78.21万
  • 项目类别:
Diversity Supplement for 'Personalized Networks and Sensor Technology Algorithms of Eating Disorder Symptoms Predicting Eating Disorder Outcomes'
“饮食失调症状的个性化网络和传感器技术算法预测饮食失调结果”的多样性补充
  • 批准号:
    10329150
  • 财政年份:
    2021
  • 资助金额:
    $ 78.21万
  • 项目类别:

相似海外基金

Establishing best practices for the use of accelerometer measured ambient light sensor data to assess children's outdoor time
建立使用加速度计测量的环境光传感器数据来评估儿童的户外时间的最佳实践
  • 批准号:
    10731315
  • 财政年份:
    2023
  • 资助金额:
    $ 78.21万
  • 项目类别:
Training of machine learning algorithms for the classification of accelerometer-measured bednet use and related behaviors associated with malaria risk
训练机器学习算法,用于对加速计测量的蚊帐使用和与疟疾风险相关的相关行为进行分类
  • 批准号:
    10727374
  • 财政年份:
    2023
  • 资助金额:
    $ 78.21万
  • 项目类别:
Development of environmentally robust and thermally stable Microelectromechanical Systems (MEMS) based accelerometer for automotive applications
开发适用于汽车应用的环境稳定且热稳定的微机电系统 (MEMS) 加速度计
  • 批准号:
    566730-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 78.21万
  • 项目类别:
    Alliance Grants
Use of accelerometer and gyroscope data to improve precision of estimates of physical activity type and energy expenditure in free-living adults
使用加速度计和陀螺仪数据来提高自由生活成年人身体活动类型和能量消耗的估计精度
  • 批准号:
    10444075
  • 财政年份:
    2022
  • 资助金额:
    $ 78.21万
  • 项目类别:
Use of accelerometer and gyroscope data to improve precision of estimates of physical activity type and energy expenditure in free-living adults
使用加速度计和陀螺仪数据来提高自由生活成年人身体活动类型和能量消耗的估计精度
  • 批准号:
    10617774
  • 财政年份:
    2022
  • 资助金额:
    $ 78.21万
  • 项目类别:
Exploration of novel pathophysiology of chemotherapy-induced peripheral neuropathy utilizing quantitative sensory testing and accelerometer
利用定量感觉测试和加速度计探索化疗引起的周围神经病变的新病理生理学
  • 批准号:
    22K17623
  • 财政年份:
    2022
  • 资助金额:
    $ 78.21万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Investigating the validity and reliability of accelerometer-based measures of physical activity and sedentary time in toddlers (iPLAY)
研究基于加速度计的幼儿体力活动和久坐时间测量的有效性和可靠性 (iPLAY)
  • 批准号:
    475451
  • 财政年份:
    2022
  • 资助金额:
    $ 78.21万
  • 项目类别:
    Studentship Programs
Investigating the reliability of accelerometer-based measures of physical activity and sedentary time in toddlers
研究基于加速度计的幼儿体力活动和久坐时间测量的可靠性
  • 批准号:
    466914
  • 财政年份:
    2021
  • 资助金额:
    $ 78.21万
  • 项目类别:
    Studentship Programs
Doctoral Dissertation Research: Leveraging Intensive Time Series of Accelerometer Data to Assess Impulsivity and Inattention in Preschool Children
博士论文研究:利用加速计数据的密集时间序列来评估学龄前儿童的冲动和注意力不集中
  • 批准号:
    2120223
  • 财政年份:
    2021
  • 资助金额:
    $ 78.21万
  • 项目类别:
    Standard Grant
Development of a rotation-invariant accelerometer for human activity recognition
开发用于人类活动识别的旋转不变加速度计
  • 批准号:
    21K19804
  • 财政年份:
    2021
  • 资助金额:
    $ 78.21万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了