Investigation of convergence properties of discretized optimal control problems subject to differential-algebraic equations

研究微分代数方程离散最优控制问题的收敛性质

基本信息

项目摘要

The purpose of the project is to investigate convergence properties of discretizations of optimal control problems subject to differential-algebraic equations (DAEs). The project builds upon the outcome of the preceding project and aims to extend these results substantially to new problem settings and discretization schemes. So far the convergence of an implicit Euler discretization for index-two DAE optimal control problems with mixed control-state constraints has been established. In order to show the convergence, it was necessary to use a clever reformulation of the algebraic constraints on discretization level. It shall be investigated whether this technique can be extended to problems with DAEs of index greater than two. To this end it is not clear whether a simple implicit Euler scheme is sufficient or whether higher order schemes are required. This shall be clarified by investigating higher order Runge-Kutta methods and their convergence properties. Finally convergence results are sought for problems with pure state constraints and linearly appearing controls (bang-bang controls).
该项目的目的是研究微分代数方程(DAE)的最优控制问题离散化的收敛性。该项目建立在前一个项目的结果,旨在将这些结果大大扩展到新的问题设置和离散化方案。到目前为止,收敛性的隐式欧拉离散指数二DAE最优控制问题的混合控制状态约束已建立。为了证明收敛性,有必要在离散化水平上巧妙地重新表述代数约束。应研究此技术是否可以扩展到指数大于2的DAE的问题。为此,尚不清楚是否一个简单的隐式欧拉格式是足够的,或者是否需要更高阶的格式。这将通过研究高阶Runge-Kutta方法及其收敛特性来澄清。最后收敛结果寻求纯状态约束和线性出现的控制(Bang-Bang控制)的问题。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Convergence Analysis of the Implicit Euler-discretization and Sufficient Conditions for Optimal Control Problems Subject to Index-one Differential-algebraic Equations
  • DOI:
    10.1007/s11228-018-0471-x
  • 发表时间:
    2019-06-01
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Martens, Bjoern;Gerdts, Matthias
  • 通讯作者:
    Gerdts, Matthias
Error Analysis for the Implicit Euler Discretization of Linear-Quadratic Control Problems with Higher Index DAEs and Bang–Bang Solutions
具有较高指数 DAE 和 BangâBang 解的线性二次控制问题的隐式欧拉离散化的误差分析
  • DOI:
    10.1007/978-3-030-53905-4_10
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Björn Martens;Matthias Gerdts
  • 通讯作者:
    Matthias Gerdts
Convergence Analysis for Approximations of Optimal Control Problems Subject to Higher Index Differential-Algebraic Equations and Mixed Control-State Constraints
高指数微分代数方程和混合控制状态约束下最优控制问题逼近的收敛性分析
  • DOI:
    10.1137/18m1219382
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Björn Martens;Matthias Gerdts
  • 通讯作者:
    Matthias Gerdts
Convergence Analysis for Approximations of Optimal Control Problems Subject to Higher Index Differential-Algebraic Equations and Pure State Constraints
高指数微分代数方程和纯状态约束下最优控制问题逼近的收敛性分析
  • DOI:
    10.1137/20m1353952
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Björn Martens;Matthias Gerdts
  • 通讯作者:
    Matthias Gerdts
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Matthias Gerdts其他文献

Professor Dr. Matthias Gerdts的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Matthias Gerdts', 18)}}的其他基金

Untersuchung eines nichtglatten Newtonverfahrens für steuer- und zustandsbeschränkte Optimalsteuerungsprobleme
研究控制和状态约束最优控制问题的非光滑牛顿方法
  • 批准号:
    30819490
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Refinement of convergence theorems of nonlinear integrals with applications to the topological properties of function spaces determined by nonlinear integrals
非线性积分收敛定理的细化及其对非线性积分确定的函数空间拓扑性质的应用
  • 批准号:
    20K03695
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Stability and convergence properties of forced Lur'e system
强制Lure系统的稳定性和收敛性
  • 批准号:
    1789410
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Studentship
Geometric properties of Schramm-Loewner evolution and convergence of critical lattice interfaces.
Schramm-Loewner 演化的几何性质和临界晶格界面的收敛。
  • 批准号:
    426011-2012
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Geometric properties of Schramm-Loewner evolution and convergence of critical lattice interfaces.
Schramm-Loewner 演化的几何性质和临界晶格界面的收敛。
  • 批准号:
    426011-2012
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Geometric properties of Schramm-Loewner evolution and convergence of critical lattice interfaces.
Schramm-Loewner 演化的几何性质和临界晶格界面的收敛。
  • 批准号:
    426011-2012
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Problems concerning convergence and separation properties in topological spaces
拓扑空间中的收敛性和分离性问题
  • 批准号:
    238944-2006
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Spatio-temporal analysis of cell membrane molecules involved in the enhancement of malignant properties by glycosphingolipids
鞘糖脂增强恶性特性涉及的细胞膜分子的时空分析
  • 批准号:
    23590371
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Problems concerning convergence and separation properties in topological spaces
拓扑空间中的收敛性和分离性问题
  • 批准号:
    238944-2006
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Can Common Oculomotor Disorders Be Understood By Failures Of Adaptive Properties?
常见的动眼神经疾病可以通过适应性障碍来理解吗?
  • 批准号:
    182968
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Studentship Programs
Problems concerning convergence and separation properties in topological spaces
拓扑空间中的收敛性和分离性问题
  • 批准号:
    238944-2006
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了