Data driven methods for the calibration of the energy scale of air Cherenkov telescopes
航空切伦科夫望远镜能量标度校准的数据驱动方法
基本信息
- 批准号:284334853
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2015
- 资助国家:德国
- 起止时间:2014-12-31 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The field of gamma-ray astronomy at the highest energies beyond 100 GeV has been driven by ground based imaging air Cherenkov telescopes (IACTs) with the discovery of numerous celestial particle accelerators, measurement of extra-galactic background light as well as a rich programme of fundamental physics including indirect searches for Dark Matter, axion-like particles, and Lorentz invariance violation. In order to fully exploit the potential of current instruments as well as for the planned Cherenkov telescope array (CTA), a careful calibration of the instruments is required. For CTA, the calibration and stability of the absolute energy calibration is required to be better than 10%. In the proposed project, we will develop further our previous work on cross-calibrating ground based with space based gamma-ray telescopes. Contrary to our previous work, the better energy coverage will allow to do a model-independent cross calibration using the overlap in energy. We suggest two new approaches to calibrate the energy scale with simulations. The method DC will use the direct Cherenkov light generated by cosmic-ray iron nuclei entering the atmosphere. The method PSF will exploit the excellent characterization of the point spread function with high statistics and its comparison with simulations: a shift of the energy scale in simulations and data leads to a mismatch of simulation and data. In turn, this can be used to tune the energy calibration. The approaches are complementary with each other and orthogonal to atmospheric monitoring approaches. The resulting systematic uncertainties are expected to be smaller than 10% on the absolute energy scale.
超过100 GeV的最高能量的伽马射线天文学领域一直由地基成像空气切伦科夫望远镜(IACT)驱动,发现了许多天体粒子加速器,测量了银河系外的背景光以及丰富的基础物理学计划,包括间接搜索暗物质,类轴子粒子和洛伦兹不变性破坏。为了充分利用现有仪器的潜力以及计划中的切伦科夫望远镜阵列(CTA),需要对仪器进行仔细校准。对于CTA,绝对能量校准的校准和稳定性要求优于10%。 在拟议的项目中,我们将进一步发展我们以前的工作,交叉校准地面与空间为基础的伽马射线望远镜。与我们以前的工作相反,更好的能量覆盖将允许使用能量重叠进行与模型无关的交叉校准。我们提出了两种新的方法来校准模拟的能量尺度。DC方法将使用进入大气层的宇宙射线铁核产生的直接切伦科夫光。PSF方法将利用具有高统计量的点扩散函数的优异特性及其与模拟的比较:模拟和数据中能量尺度的偏移导致模拟和数据的不匹配。反过来,这可以用于调整能量校准。这些方法是相互补充的,并与大气监测方法正交。由此产生的系统不确定性预计将小于10%的绝对能量尺度。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Resolving the Crab pulsar wind nebula at teraelectronvolt energies
- DOI:10.1038/s41550-019-0910-0
- 发表时间:2019-09
- 期刊:
- 影响因子:14.1
- 作者:H. Collaboration
- 通讯作者:H. Collaboration
The Energy-dependent γ-Ray Morphology of the Crab Nebula Observed with the Fermi Large Area Telescope
费米大面积望远镜观测到的蟹状星云的能量依赖γ射线形态
- DOI:10.3847/1538-4357/ab107a
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Paul K.H.
- 通讯作者:Paul K.H.
Particle transport within the pulsar wind nebula HESS J1825–137
- DOI:10.1051/0004-6361/201834335
- 发表时间:2018-10
- 期刊:
- 影响因子:6.5
- 作者:H. Abdalla;F. Aharonian;F. Benkhali;F. Benkhali;E. Angüner;M. Arakawa;C. Arcaro;C. Armand;M. Arrieta;Michael Backes;M. Barnard;Y. Becherini;J. Tjus;D. Berge;K. Bernloehr;R. Blackwell;M. Böttcher;C. Boisson;J. Bolmont;S. Bonnefoy;P. Bordas;J. Bregeon;F. Brun;P. Brun;M. Bryan;M. Buechele;T. Bulik;T. Bylund;M. Capasso;S. Caroff;A. Carosi;S. Casanova;M. Cerruti;N. Chakraborty;T. Chand;S. Chandra;R. Chaves;A. Chen;S. Colafrancesco;B. Condon;I. Davids;C. Deil;J. Devin;P. deWilt;L. Dirson;A. Djannati-Ataï;A. Dmytriiev;A. Donath;Doroshenko;L. Drury;J. Dyks;K. Egberts;G. Emery;J. Ernenwein;S. Eschbach;S. Fegan;A. Fiasson;G. Fontaine;S. Funk;M. Fuessling;S. Gabici;Y. Gallant;F. Gaté;G. Giavitto;D. Glawion;J. Glicenstein;D. Gottschall;M. Grondin;J. Hahn;M. Haupt;G. Heinzelmann;G. Henri;G. Hermann;J. Hinton;W. Hofmann;C. Hoischen;T. Holch;M. Holler;D. Horns;D. Huber;H. Iwasaki;A. Jacholkowska;M. Jamrozy;D. Jankowsky;F. Jankowsky;L. Jouvin;I. Jung-Richardt;M. Kastendieck;K. Katarzy'nski;M. Katsuragawa;U. Katz;D. Kerszberg;D. Khangulyan;B. Kh'elifi;J. King;S. Klepser;W. Kluźniak;N. Komin;K. Kosack;M. Kraus;G. Lamanna;J. Lau;J. Lefaucheur;A. Lemière;M. Lemoine-Goumard;J. Lenain;E. Leser;T. Lohse;R. L'opez-Coto;I. Lypova;D. Malyshev;Marandon;A. Marcowith;C. Mariaud;G. Martí-Devesa;R. Marx;G. Maurin;P. Meintjes;A. Mitchell;A. Mitchell;R. Moderski;M. Mohamed;L. Mohrmann;C. Moore;E. Moulin;T. Murach;S. Nakashima;M. Naurois;H. Ndiyavala;F. Niederwanger;J. Niemiec;L. Oakes;P. O’Brien;H. Odaka;S. Ohm;M. Ostrowski;I. Oya;M. Panter;R. Parsons;C. Perennes;P. Petrucci;B. Peyaud;Q. Piel;S. Pita;Poireau;A. Noel;D. Prokhorov;H. Prokoph;G. Puehlhofer;M. Punch;A. Quirrenbach;S. Raab;R. Rauth;A. Reimer;O. Reimer;M. Renaud;F. Rieger;L. Rinchiuso;C. Romoli;G. Rowell;B. Rudak;E. Ruiz-Velasco;Sahakian;S. Saito;David Sánchez;A. Santangelo;M. Sasaki;R. Schlickeiser;F. Schüssler;A. Schulz;H. Schutte;U. Schwanke;S. Schwemmer;M. Seglar-Arroyo;M. Senniappan;A. Seyffert;N. Shafi;I. Shilon;K. Shiningayamwe;R. Simoni;A. Sinha;H. Sol;A. Specovius;M. Spir-Jacob;L. Stawarz;R. Steenkamp;C. Stegmann;C. Steppa;T. Takahashi;J. Tavernet;T. Tavernier;A. M. Taylor;R. Terrier;L. Tibaldo;D. Tiziani;M. Tluczykont;C. Trichard;M. Tsirou;N. Tsuji;R. Tuffs;Y. Uchiyama;D. D. Walt-D.;C. Eldik;C. V. Rensburg;B. V. Soelen;G. Vasileiadis;J. Veh;C. Venter;P. Vincent;J. Vink;F. Voisin;H. Voelk;T. Vuillaume;Z. Wadiasingh;S. Wagner;R. Wagner;R. White;A. Wierzcholska;Rui-zhi Yang;H. Yoneda;D. Zaborov;M. Zacharias;R. Zanin;A. Zdziarski;A. Zech;F. Zefi;A. Ziegler;J. Zorn;N. Żywucka
- 通讯作者:H. Abdalla;F. Aharonian;F. Benkhali;F. Benkhali;E. Angüner;M. Arakawa;C. Arcaro;C. Armand;M. Arrieta;Michael Backes;M. Barnard;Y. Becherini;J. Tjus;D. Berge;K. Bernloehr;R. Blackwell;M. Böttcher;C. Boisson;J. Bolmont;S. Bonnefoy;P. Bordas;J. Bregeon;F. Brun;P. Brun;M. Bryan;M. Buechele;T. Bulik;T. Bylund;M. Capasso;S. Caroff;A. Carosi;S. Casanova;M. Cerruti;N. Chakraborty;T. Chand;S. Chandra;R. Chaves;A. Chen;S. Colafrancesco;B. Condon;I. Davids;C. Deil;J. Devin;P. deWilt;L. Dirson;A. Djannati-Ataï;A. Dmytriiev;A. Donath;Doroshenko;L. Drury;J. Dyks;K. Egberts;G. Emery;J. Ernenwein;S. Eschbach;S. Fegan;A. Fiasson;G. Fontaine;S. Funk;M. Fuessling;S. Gabici;Y. Gallant;F. Gaté;G. Giavitto;D. Glawion;J. Glicenstein;D. Gottschall;M. Grondin;J. Hahn;M. Haupt;G. Heinzelmann;G. Henri;G. Hermann;J. Hinton;W. Hofmann;C. Hoischen;T. Holch;M. Holler;D. Horns;D. Huber;H. Iwasaki;A. Jacholkowska;M. Jamrozy;D. Jankowsky;F. Jankowsky;L. Jouvin;I. Jung-Richardt;M. Kastendieck;K. Katarzy'nski;M. Katsuragawa;U. Katz;D. Kerszberg;D. Khangulyan;B. Kh'elifi;J. King;S. Klepser;W. Kluźniak;N. Komin;K. Kosack;M. Kraus;G. Lamanna;J. Lau;J. Lefaucheur;A. Lemière;M. Lemoine-Goumard;J. Lenain;E. Leser;T. Lohse;R. L'opez-Coto;I. Lypova;D. Malyshev;Marandon;A. Marcowith;C. Mariaud;G. Martí-Devesa;R. Marx;G. Maurin;P. Meintjes;A. Mitchell;A. Mitchell;R. Moderski;M. Mohamed;L. Mohrmann;C. Moore;E. Moulin;T. Murach;S. Nakashima;M. Naurois;H. Ndiyavala;F. Niederwanger;J. Niemiec;L. Oakes;P. O’Brien;H. Odaka;S. Ohm;M. Ostrowski;I. Oya;M. Panter;R. Parsons;C. Perennes;P. Petrucci;B. Peyaud;Q. Piel;S. Pita;Poireau;A. Noel;D. Prokhorov;H. Prokoph;G. Puehlhofer;M. Punch;A. Quirrenbach;S. Raab;R. Rauth;A. Reimer;O. Reimer;M. Renaud;F. Rieger;L. Rinchiuso;C. Romoli;G. Rowell;B. Rudak;E. Ruiz-Velasco;Sahakian;S. Saito;David Sánchez;A. Santangelo;M. Sasaki;R. Schlickeiser;F. Schüssler;A. Schulz;H. Schutte;U. Schwanke;S. Schwemmer;M. Seglar-Arroyo;M. Senniappan;A. Seyffert;N. Shafi;I. Shilon;K. Shiningayamwe;R. Simoni;A. Sinha;H. Sol;A. Specovius;M. Spir-Jacob;L. Stawarz;R. Steenkamp;C. Stegmann;C. Steppa;T. Takahashi;J. Tavernet;T. Tavernier;A. M. Taylor;R. Terrier;L. Tibaldo;D. Tiziani;M. Tluczykont;C. Trichard;M. Tsirou;N. Tsuji;R. Tuffs;Y. Uchiyama;D. D. Walt-D.;C. Eldik;C. V. Rensburg;B. V. Soelen;G. Vasileiadis;J. Veh;C. Venter;P. Vincent;J. Vink;F. Voisin;H. Voelk;T. Vuillaume;Z. Wadiasingh;S. Wagner;R. Wagner;R. White;A. Wierzcholska;Rui-zhi Yang;H. Yoneda;D. Zaborov;M. Zacharias;R. Zanin;A. Zdziarski;A. Zech;F. Zefi;A. Ziegler;J. Zorn;N. Żywucka
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Dieter Horns其他文献
Professor Dr. Dieter Horns的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Dieter Horns', 18)}}的其他基金
The origin of the high energy gamma-ray emission from the Crab nebula - clues from the spatial extension and energy spectrum
蟹状星云高能伽马射线发射的起源——空间延伸和能谱的线索
- 批准号:
360780919 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
基于Cache的远程计时攻击研究
- 批准号:60772082
- 批准年份:2007
- 资助金额:28.0 万元
- 项目类别:面上项目
相似海外基金
Accurate and Individualized Prediction of Excitation-Inhibition Imbalance in Alzheimer's Disease using Data-driven Neural Model
使用数据驱动的神经模型准确、个性化地预测阿尔茨海默病的兴奋抑制失衡
- 批准号:
10727356 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Supporting data-driven decision-making to support substance use service expansion policies and to prevent overdoses
支持数据驱动的决策,以支持物质使用服务扩展政策并防止用药过量
- 批准号:
10745632 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Data-driven and science-informed methods for the discovery of biomedical mechanisms and processes
用于发现生物医学机制和过程的数据驱动和科学信息方法
- 批准号:
10624014 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Thermal noise reduction in next-generation cryogenic gravitational wave telescopes through nonlinear physical model fusion data-driven methods
通过非线性物理模型融合数据驱动方法降低下一代低温引力波望远镜的热噪声
- 批准号:
23K03437 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of Data-Collection Algorithms and Data-Driven Control Methods for Guaranteed Stabilization of Nonlinear Systems with Uncertain Equilibria and Orbits
开发数据收集算法和数据驱动控制方法,以保证具有不确定平衡和轨道的非线性系统的稳定性
- 批准号:
23K03913 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Integrating Musculoskeletal and Data-Driven Modeling to Understand the Biomechanical Sequelae of Syndesmotic Repair
整合肌肉骨骼和数据驱动建模以了解韧带联合修复的生物力学后遗症
- 批准号:
10751099 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Learning Precision Medicine for Rare Diseases Empowered by Knowledge-driven Data Mining
通过知识驱动的数据挖掘学习罕见疾病的精准医学
- 批准号:
10732934 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Development of data-driven methods for de novo design of novel enzymes.
开发用于新型酶从头设计的数据驱动方法。
- 批准号:
2890692 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Development of data driven and AI empowered systems biology to study human diseases
数据驱动和人工智能的发展使系统生物学能够研究人类疾病
- 批准号:
10714763 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Collaborative Research: IHBEM: Data-driven multimodal methods for behavior-based epidemiological modeling
合作研究:IHBEM:基于行为的流行病学建模的数据驱动多模式方法
- 批准号:
2327710 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant