Selective Passivation of Electrical Defects in Metal Oxides

金属氧化物中电缺陷的选择性钝化

基本信息

项目摘要

In 1962 the first solid state metal oxide gas-sensor was reported. Since then metal oxides gained high importance in the fields of sensors due to their excellent chemo-resistive properties. Since 2004 another fast developing field of application for metal oxides was promoted by Hosono who fabricated the first metal oxide based thin-film transistor (TFT). High mobility even in amorphous and nano-crystalline films, transparency in the visible range and solution processability by cheap deposition technology make the class of material highly interesting for innovative electronic applications, e.g. for transparent and smart displays. The dynamic surface structure of metal oxides serves as big advantage for sensor and catalysis applications but represents the major drawback of the material as active layer in transistors. Logic circuits require high stability and reliability even under long term operation. These criteria turned out to be very challenging in metal oxide transistor application. Especially, a high sensitivity of the electrical devices towards humidity was correlated to the significant instability of device characteristics. The effect becomes even more enhanced by the ultra-thin films and their nanoparticular and amorphous character.Especially in cheap and low temperature processes, which are a prerequisite for wide spread applications, an increased density of impurities is incorporated in the material creating a high number of defect states which act as electrically active sites hampering proper transistor operations. Low temperature (< 200 °C) spray deposited ZnO is possible as a large-area coating process, but exhibits a dramatic performance loss with decreasing temperature. Hence passivation of these active sites is not only necessary to improve device stability significantly but also to reduce the process temperature dramatically while keeping the performance constant. In this project various approaches are followed to selective passivate those defects during and/or after deposition. In this respect, Fluor containing molecules are known for their unique properties, e.g. Teflon towards water. AG Wagner and AG Röschenthaler have already demonstrated exceptional passivation properties offered by specific Fluor containing molecules with respect to metal oxide transistor operations. Focus in this project is to systematically modify functional chemical groups in Fluor containing molecules, which allow to understand their passivation mechanism and to identify superior passivation procedures and strategies for metal oxide transistors.
1962年报道了第一个固态金属氧化物气敏元件。 从那时起,金属氧化物由于其优异的化学电阻特性而在传感器领域获得了高度的重要性。自2004年以来,另一个快速发展的金属氧化物应用领域由细野推动,他制造了第一个金属氧化物薄膜晶体管(TFT)。即使在非晶和纳米晶薄膜中也具有高迁移率,可见光范围内的透明度以及通过廉价沉积技术实现的溶液可加工性使得这类材料对于创新的电子应用非常感兴趣,例如用于透明和智能显示器。金属氧化物的动态表面结构为传感器和催化应用提供了巨大的优势,但代表了该材料作为晶体管活性层的主要缺点。逻辑电路即使在长期工作下也需要高稳定性和可靠性。这些标准在金属氧化物晶体管应用中变得非常具有挑战性。特别是,电气设备对湿度的高灵敏度与设备特性的显著不稳定性相关。特别是在廉价和低温工艺中,这是广泛应用的先决条件,材料中杂质密度的增加会产生大量的缺陷态,这些缺陷态作为电活性位点,阻碍晶体管正常工作。低温(< 200 °C)喷雾沉积ZnO作为大面积涂覆工艺是可能的,但随着温度降低表现出显著的性能损失。因此,这些活性位点的钝化不仅对于显著提高器件稳定性是必要的,而且对于在保持性能恒定的同时显著降低工艺温度也是必要的。在这个项目中,采用各种方法在沉积过程中和/或沉积后选择性钝化这些缺陷。在这方面,含氟分子因其独特的性质而闻名,例如Teflon对水的作用。AG瓦格纳和AG罗旭格已经证明了特殊的含氟分子在金属氧化物晶体管操作方面提供的卓越钝化性能。该项目的重点是系统地修改含氟分子中的功能化学基团,从而了解其钝化机制,并确定金属氧化物晶体管的上级钝化程序和策略。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Gerd-Volker Röschenthaler其他文献

Professor Dr. Gerd-Volker Röschenthaler的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Gerd-Volker Röschenthaler', 18)}}的其他基金

Novel synthetic approaches towards organic sulfur pentafluorides
有机五氟化硫的新合成方法
  • 批准号:
    390597941
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
From masked carbenes to heterocycles: Novel potentially biological active difluoromethylene phosphonates as versatile building blocks
从掩蔽卡宾到杂环:新型潜在生物活性二氟亚甲基膦酸酯作为多功能结构单元
  • 批准号:
    391415715
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Entwicklung von Elektrolytkomponenten und Additiven insbesondere zur Filmbildung an der Kathode von wieder aufladbaren Lithium-Ionen-Batterien
开发电解质成分和添加剂,特别是在可充电锂离子电池的阴极上成膜
  • 批准号:
    215989957
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Research Grants (Transfer Project)
Neue fluorierte Bor-, Aluminium-, Phosphor-, Sauerstoff- und Schwefel-zentrierte Anionen; Elektrolyte, Redox-Shuttle und Additive
新型氟化硼、铝、磷、氧和硫为中心的阴离子;
  • 批准号:
    181966120
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

RII Track-4:NSF: Understanding Perovskite Solar Cell Passivation at The Level of Organic Functional Groups through Ultrafast Spectroscopy
RII Track-4:NSF:通过超快光谱了解有机官能团水平的钙钛矿太阳能电池钝化
  • 批准号:
    2326788
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Corrosion triggered self-passivation of magnesium alloys
腐蚀引发镁合金的自钝化
  • 批准号:
    DP240101430
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Passivation by Ultimate Ligand-Surface Activation Rationalized by NMR
通过 NMR 合理化最终配体表面活化的钝化
  • 批准号:
    EP/Y023781/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Plasma annealing for defect passivation in semiconductor materials
用于半导体材料缺陷钝化的等离子体退火
  • 批准号:
    23K03374
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Developing Nanoscale Passivation Layers for Tandem Solar Cell Interfaces: Towards Terawatt-Scale Solar PV
开发串联太阳能电池接口的纳米级钝化层:迈向太瓦级太阳能光伏
  • 批准号:
    EP/Y027884/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Fellowship
In-situ observation of wear based on passivation behavior of corrosion resistant materials in high temperature and high pressure environments
基于耐腐蚀材料在高温高压环境下钝化行为的磨损原位观察
  • 批准号:
    23K03646
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Effects of mixed anions and passivation on perovskite solar cells fabricated by vapor-phase deposition
混合阴离子和钝化对气相沉积钙钛矿太阳能电池的影响
  • 批准号:
    23K04656
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: Compositional and Atomic-Scale Ordering Effects on Aqueous Passivation of Binary BCC and FCC Alloys
合作研究:二元 BCC 和 FCC 合金水相钝化的成分和原子尺度有序效应
  • 批准号:
    2208865
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Compositional and Atomic-Scale Ordering Effects on Aqueous Passivation of Binary BCC and FCC Alloys
合作研究:二元 BCC 和 FCC 合金水相钝化的成分和原子尺度有序效应
  • 批准号:
    2208848
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Procédés de passivation pour les composants électroniques III-N/III-V et pour les dispositifs quantiques
III-N/III-V 电子组合物钝化过程和量子配置
  • 批准号:
    RGPIN-2020-05785
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了