Reinheit von Detektormaterialien

探测器材料的纯度

基本信息

  • 批准号:
    289333318
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    德国
  • 项目类别:
    Research Units
  • 财政年份:
    2016
  • 资助国家:
    德国
  • 起止时间:
    2015-12-31 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

Die optische Reinheit und die Reduktion der Radioaktivität der Materialien, aus denen der Flüssigszintillator LSc hergestellt wird, sind für den Erfolg des Experiments entscheidend. Wir streben eine Energieauflösung von 3% bei 1 MeV an. Dies bedingt, neben einer hohen Lichtausbeute und einem hocheffizienten Photonennachweis, Absorptions- und Streulängen im LSc von wenigstens 30 m (bei 430 nm). Zudem konnte kürzlich gezeigt werden, dass Nichtlinearitäten in der Response-Funktion des LSc von großer Bedeutung sind. In der Masterarbeit von J. Sawatzki wird aufgezeigt, dass systematische Unsicherheiten dieser Art von ca. nur 0,15 MeV bei 5 MeV bereits die Bestimmung der Massenhierarchie gefährden. Zwar werden bei hinreichender Auflösung die sich abwechselnden Maxima und Minima im Spektrum beobachtet, aber die Positionen der Extrema werden der falschen Massenhierarchie zugeordnet.
光学原理和材料辐射的减少,从流体力学的角度看,是一个很好的实验结果。在1兆电子伏的能量下,我们将消耗3%的能量。在波长30 m(430 nm)处的LSc中产生一个高亮度和高效率的光子吸收、吸收和反射。因此,可以韦尔登地理解,LSc的响应函数中存在非线性。在萨瓦茨基的大师作品中,系统地揭示了这种艺术。努尔0.15 MeV和5 MeV的能量可以被测量。韦尔登在一个新的增长点上,将最大值和最小值放在一个被观察到的光谱上,但在极端的位置上,沃尔登韦尔登将被错误的质量等级所取代。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Lothar Oberauer其他文献

Professor Dr. Lothar Oberauer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Lothar Oberauer', 18)}}的其他基金

WP3 Liquid Scintillator
WP3 液体闪烁体
  • 批准号:
    415966064
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Units
Real time solar neutrino spectroscopy with Borexino phase 2
使用 Borexino Phase 2 进行实时太阳中微子光谱分析
  • 批准号:
    284839683
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Messung solarer CNO-, pep-Neutrinos und Elektronantineutrinos in BOREXINO
BOREXINO 中太阳碳氮氧化物、激发中微子和电子反中微子的测量
  • 批准号:
    112577595
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Research Grants
WP 4 - Event selection and backgrounds
WP 4 - 事件选择和背景
  • 批准号:
    520581278
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Units

相似国自然基金

半有限von Neumann代数中投影集上的Wigner定理
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
CUL7基因突变导致Von Hippel Lindau蛋白细胞内蓄积增多致3-M综合征软骨细胞分化异常的分子机制研究
  • 批准号:
    82302106
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
非交换Weyl-von Neumann定理及其弱形式在von Neumann代数中的拓展
  • 批准号:
    12271074
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目
线性保持方法在量子信息研究中的应用
  • 批准号:
    12001420
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
关于算子代数上非交换Weyl-von Neumann定理的研究
  • 批准号:
    12001437
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
模型空间上截断Toeplitz算子的可约性
  • 批准号:
    12001089
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
有限von Neumann代数的相对顺从性
  • 批准号:
    12001085
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
关于超有限II_1因子中一类算子的不变子空间和单个元生成问题的研究
  • 批准号:
    11961037
  • 批准年份:
    2019
  • 资助金额:
    29.0 万元
  • 项目类别:
    地区科学基金项目
算子代数中齐性空间的微分几何结构
  • 批准号:
    11901453
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
非交换Orlicz空间的性质及其闭子空间
  • 批准号:
    11901038
  • 批准年份:
    2019
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

循環補助時von Willebrand因子の環境応答評価プラットフォーム創生
创建一个平台,用于评估循环支持期间冯维勒布兰德因子的环境反应
  • 批准号:
    23K25186
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
ECMOによるvon Willebrand 因子への影響
ECMO对血管性血友病因子的影响
  • 批准号:
    24K12171
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Entropy and Boundary Methods in von Neumann Algebras
冯诺依曼代数中的熵和边界方法
  • 批准号:
    2350049
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Approximation properties in von Neumann algebras
冯·诺依曼代数中的近似性质
  • 批准号:
    2400040
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Free Information Theory Techniques in von Neumann Algebras
冯诺依曼代数中的自由信息理论技术
  • 批准号:
    2348633
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
止血タンパク質の発現多様性と止血機能および止血以外の機能に関する基礎研究
止血蛋白表达多样性、止血功能及止血以外功能的基础研究
  • 批准号:
    23H02681
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Novel Broad-Spectrum Point-of-Care Coagulometer
新型广谱护理点凝血计
  • 批准号:
    10707617
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Pathogenesis of thrombotic microangiopathies
血栓性微血管病的发病机制
  • 批准号:
    10608740
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Endothelial von Willebrand factor and the tissue-specific regulation of angiogenesis and vascular integrity
内皮血管性血友病因子和血管生成和血管完整性的组织特异性调节
  • 批准号:
    MR/X021106/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Multimeric Structural Degradation of vWF in Turbulent Flows
vWF 在湍流中的多聚体结构降解
  • 批准号:
    10563289
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了