Free Information Theory Techniques in von Neumann Algebras
冯诺依曼代数中的自由信息理论技术
基本信息
- 批准号:2348633
- 负责人:
- 金额:$ 42.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-07-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Von Neumann algebras arose in the 1930s as a mathematical framework for quantum mechanics. In classical mechanics it is possible to simultaneously observe and measure various properties of a physical system — for example, the locations and velocities of all of its components. Such properties are often called observables. Observables be viewed as functions of the underlying system and form an algebra — they can be added and multiplied. In quantum mechanics, simultaneous measurements are no longer possible. Mathematically this is reflected by the non-commutativity of the algebra of observables for quantum systems. Nonetheless, many of the operations that can be done with ordinary functions have quantum analogs. The current proposal studies such non-commutative algebras of observables from the angle of Voiculescu’s free probability theory, which treats observables as random variables. This results in an extremely rich theory that leads to free probability generalizations of classical objects such as partial differential equations and Brownian motion, amenable to analysis by techniques inspired by classical information theory. This project will promote human resource development through graduate and undergraduate research opportunities and will support students under the auspices of the UCLA Olga Radko Endowed Math Circle. The proposed research deals with several questions in von Neumann algebras which are approached by free probability and free information methods, including free entropy theory. This includes further developing PDE based methods in the non-commutative context and strengthening the connection between free probability and random matrix theory. Among the research directions is a notion of dimension that is based on the behavior of optimal transportation distance, as well as applications of free information theory techniques to von Neumann algebra theory. The project includes a mixture of problems, some coming from existing research directions and some exploring new lines of inquiry.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
冯·诺依曼代数兴起于20世纪30年代,是量子力学的数学框架。在经典力学中,可以同时观察和测量物理系统的各种性质--例如,它所有组件的位置和速度。这样的性质通常被称为可观测性。可观测性被视为底层系统的函数,并形成一个代数--它们可以相加和相乘。在量子力学中,同时测量不再可能。从数学上讲,这反映在量子系统可观测代数的非对易性上。尽管如此,许多可以用普通函数完成的操作都有量子类比。目前的建议是从沃库列斯库的自由概率理论的角度来研究这类非对易可观测代数,该理论将可观测数据视为随机变量。这导致了一个极其丰富的理论,它导致了经典对象的自由概率推广,如偏微分方程和布朗运动,服从于受经典信息论启发的技术分析。该项目将通过研究生和本科生的研究机会促进人力资源开发,并将在加州大学洛杉矶分校奥尔加·拉德科捐赠数学圈的赞助下支持学生。提出的研究涉及von Neumann代数中的几个问题,这些问题是通过自由概率和自由信息方法来处理的,其中包括自由熵理论。这包括在非对易环境下进一步发展基于偏微分方程的方法,以及加强自由概率和随机矩阵理论之间的联系。其中的研究方向是基于最优运输距离行为的维度概念,以及自由信息论技术在冯·诺伊曼代数理论中的应用。该项目包括一系列问题,一些来自现有的研究方向,一些来自探索新的调查路线。这个奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dimitri Shlyakhtenko其他文献
GROUP TOPOLOGIES ON AUTOMORPHISM GROUPS OF HOMOGENEOUS STRUCTURES
齐次结构自同构群的群拓扑
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Z. A. G. Hadernezhad;DE Javier;L. G. Onzalez;Matthias Aschenbrenner;Paul Balmer;Vyjayanthi Chari;Atsushi Ichino;Robert Lipshitz;Kefeng Liu;Dimitri Shlyakhtenko;Paul Yang;Ruixiang Zhang - 通讯作者:
Ruixiang Zhang
THE NUMBER OF (cid:70) q -POINTS ON DIAGONAL HYPERSURFACES WITH MONOMIAL DEFORMATION
单项变形对角超曲面上 (cid:70) q 点的数量
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
D. E. M. C. C. Arthy;Matthias Aschenbrenner;Paul Balmer;Vyjayanthi Chari;Atsushi Ichino;Robert Lipshitz;Kefeng Liu;Dimitri Shlyakhtenko;Paul Yang;Ruixiang Zhang - 通讯作者:
Ruixiang Zhang
Spin Lefschetz fibrations are abundant
自旋莱夫谢茨纤维非常丰富
- DOI:
10.2140/pjm.2023.326.1 - 发表时间:
2023 - 期刊:
- 影响因子:0.6
- 作者:
M. I. A. Rabadji;R. ˙. N. B. Aykur;Matthias Aschenbrenner;Paul Balmer;Vyjayanthi Chari;Atsushi Ichino;Robert Lipshitz;Kefeng Liu;Dimitri Shlyakhtenko;Paul Yang;Ruixiang Zhang - 通讯作者:
Ruixiang Zhang
Dimitri Shlyakhtenko的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dimitri Shlyakhtenko', 18)}}的其他基金
Free Probability, Transport, and Applications
免费概率、传输和应用
- 批准号:
2054450 - 财政年份:2021
- 资助金额:
$ 42.1万 - 项目类别:
Standard Grant
Institute for Pure and Applied Mathematics
纯粹与应用数学研究所
- 批准号:
1925919 - 财政年份:2020
- 资助金额:
$ 42.1万 - 项目类别:
Continuing Grant
Free Probability and Cohomology in von Neumann Algebra Theory.
冯诺依曼代数理论中的自由概率和上同调。
- 批准号:
1762360 - 财政年份:2018
- 资助金额:
$ 42.1万 - 项目类别:
Continuing Grant
IRES Track 1 Graduate Research In Industrial Projects for Students - Berlin
IRES Track 1 学生工业项目研究生研究 - 柏林
- 批准号:
1826810 - 财政年份:2018
- 资助金额:
$ 42.1万 - 项目类别:
Standard Grant
Free Gibbs States: Von Neumann Algebras, Random Matrices, and Subfactors
自由吉布斯态:冯诺依曼代数、随机矩阵和子因子
- 批准号:
1500035 - 财政年份:2015
- 资助金额:
$ 42.1万 - 项目类别:
Continuing Grant
Research in Industrial Projects for Students (RIPS) - Hong Kong
学生工业项目研究 (RIPS) - 香港
- 批准号:
1460018 - 财政年份:2015
- 资助金额:
$ 42.1万 - 项目类别:
Standard Grant
Institute for Pure and Applied Mathematics
纯粹与应用数学研究所
- 批准号:
1440415 - 财政年份:2015
- 资助金额:
$ 42.1万 - 项目类别:
Continuing Grant
Free probability techniques: von Neumann algebras, random matrices and subfactors.
免费概率技术:冯诺依曼代数、随机矩阵和子因子。
- 批准号:
1161411 - 财政年份:2012
- 资助金额:
$ 42.1万 - 项目类别:
Continuing Grant
Free probability, von Neumann algebras, subfactors and random matrices
自由概率、冯诺依曼代数、子因子和随机矩阵
- 批准号:
0900776 - 财政年份:2009
- 资助金额:
$ 42.1万 - 项目类别:
Continuing Grant
EMSW21-RTG Analysis and Applications
EMSW21-RTG分析与应用
- 批准号:
0838680 - 财政年份:2009
- 资助金额:
$ 42.1万 - 项目类别:
Standard Grant
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
- 批准号:W2433169
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
SCIENCE CHINA Information Sciences
- 批准号:61224002
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
Career: Reputation with Limited Information, Theory and Applications
职业:信息、理论和应用有限的声誉
- 批准号:
2337566 - 财政年份:2024
- 资助金额:
$ 42.1万 - 项目类别:
Continuing Grant
Travel: NSF Student Travel Grant for the 2024 IEEE International Symposium on Information Theory (ISIT 2024)
旅行:2024 年 IEEE 国际信息论研讨会 (ISIT 2024) 的 NSF 学生旅行补助金
- 批准号:
2406983 - 财政年份:2024
- 资助金额:
$ 42.1万 - 项目类别:
Standard Grant
Conference: Beyond IID in Information Theory 12
会议:信息论中的超越独立同分布 12
- 批准号:
2409823 - 财政年份:2024
- 资助金额:
$ 42.1万 - 项目类别:
Standard Grant
Operator algebras and index theory in quantum walks and quantum information theory
量子行走和量子信息论中的算子代数和索引论
- 批准号:
24K06756 - 财政年份:2024
- 资助金额:
$ 42.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Information Theory for Distributed AI (INFORMED-AI)
分布式人工智能信息论(INFORMED-AI)
- 批准号:
EP/Y028732/1 - 财政年份:2024
- 资助金额:
$ 42.1万 - 项目类别:
Research Grant
CAREER: Quantum Information Theory of Many-body Physics
职业:多体物理的量子信息论
- 批准号:
2337931 - 财政年份:2024
- 资助金额:
$ 42.1万 - 项目类别:
Continuing Grant
Development of a method for designing content for viewing that fosters the ability to perceive based on information foraging theory
基于信息搜寻理论开发一种培养感知能力的观看内容设计方法
- 批准号:
23K11334 - 财政年份:2023
- 资助金额:
$ 42.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of a Causality Analysis Method for Point Processes Based on Nonlinear Dynamical Systems Theory and Elucidation of the Representation of Information Processing in the Brain
基于非线性动力系统理论的点过程因果分析方法的发展及大脑信息处理表征的阐明
- 批准号:
22KJ2815 - 财政年份:2023
- 资助金额:
$ 42.1万 - 项目类别:
Grant-in-Aid for JSPS Fellows
New developments on quantum information analysis by a stochastic analysis based on theory of spaces consisting of generalized functionals
基于广义泛函空间理论的随机分析量子信息分析新进展
- 批准号:
23K03139 - 财政年份:2023
- 资助金额:
$ 42.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Travel: NSF Student Travel Grant for 2023 IEEE North American School for Information Theory
旅行:2023 年 IEEE 北美信息论学院 NSF 学生旅行补助金
- 批准号:
2320167 - 财政年份:2023
- 资助金额:
$ 42.1万 - 项目类别:
Standard Grant














{{item.name}}会员




