Fuzzy-arithmetical modeling of processes with uncertain prarameters

具有不确定参数的过程的模糊算术建模

基本信息

项目摘要

The goal of the subproject remains the development of a robust process modeling using metamodels for improved and efficient prediction of the effects of process fluctuations on function-critical measures. For the second phase the focus will be on the connection between metamodel and process simulation. A further approach of the simulations to real processes requires more detailed models and thus higher computing times. This makes it more difficult to evaluate enough simulations for the metamodel. It is therefore important to optimize simulations in such a way that the relationship between the input parameters and the result variables can be mapped as well as possible using the metamodel. Since both output and input variables play a decisive role, they should be coordinated with the respective TPs. From a manufacturing point of view, model assumptions such as material model or contact model as input variables for the simulation and result variables such as strength and force distribution are interesting. Process settings such as temperature or pressure as well as the geometry of the component are more important for the tolerance assignment, since these variables can be tolerated. However, these conflicts of interest are always related to each other and are represented by the simulation. The investigation of these input and output variables or their consideration with uncertainties and their optimization by means of fuzzy arithmetic is thus an important component of process-oriented tolerance management in order to optimize the interface between process simulation and tolerance simulation.A new goal of the overall project in the second phase is to take the wear behavior during operation into account during component tolerance. For the TP, the new goal is to create a virtual level of this situation. The modelling of the wear behaviour during operation leads to an additional temporal component in the modelling. In addition to the measurement uncertainty and the surface structure, operating parameters and wear over time have to be taken into account in the metamodel.The time-dependent components represent a challenge. The focus of wear is undoubtedly the gear pairing. The Archard model will be used to make a virtual prediction. Real wear tests will be compared with calculations and characterized taking into account measurement uncertainties, surface topography and operating parameters. The interaction of the components, their prediction and their effects will be analysed exemplarily at the demonstrator from the first phase.
该子项目的目标仍然是开发一个强大的过程建模,使用元模型改进和有效的预测过程波动对功能关键措施的影响。对于第二阶段,重点将放在元模型和流程模拟之间的连接上。模拟到真实的过程的进一步方法需要更详细的模型,因此需要更高的计算时间。这使得为元模型评估足够的模拟变得更加困难。因此,重要的是要优化模拟,以这种方式,输入参数和结果变量之间的关系,可以映射以及使用元模型。由于产出和投入变量都起着决定性作用,因此应与各自的贸易点协调。从制造的角度来看,模型假设,如材料模型或接触模型作为输入变量的模拟和结果变量,如强度和力分布是有趣的。工艺设置(如温度或压力)以及部件的几何形状对于公差分配更为重要,因为这些变量是可以容忍的。然而,这些利益冲突总是相互关联的,并通过模拟来表示。因此,对这些输入和输出变量的研究或对不确定性的考虑以及通过模糊算法对其进行优化是面向过程的公差管理的重要组成部分,以优化过程模拟和公差模拟之间的接口。第二阶段整个项目的一个新目标是在部件公差期间考虑操作过程中的磨损行为。对于TP来说,新的目标是创造一个虚拟的水平。在操作过程中的磨损行为的建模导致建模中的附加时间分量。除了测量不确定性和表面结构外,元模型还必须考虑操作参数和随时间的磨损。磨损的重点无疑是齿轮配对。 Archard模型将用于进行虚拟预测。将真实的磨损试验与计算结果进行比较,并考虑测量不确定性、表面形貌和操作参数进行表征。从第一阶段开始,将在演示器上对组件的相互作用、预测及其影响进行示例性分析。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Kai Willner其他文献

Professor Dr.-Ing. Kai Willner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Kai Willner', 18)}}的其他基金

Konstitutive Gesetze für den Kontakt rauer Oberflächen
粗糙表面接触的本构定律
  • 批准号:
    5442451
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Research on arithmetical properties of the special values of the theta-constants and the applications
θ常数特殊值的算术性质及其应用研究
  • 批准号:
    18K03201
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on the mean values of zeta-functions and arithmetical error terms
Zeta函数平均值和算术误差项的研究
  • 批准号:
    18K03237
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A study on the renewal process of National Arithmetical Textbook
国家算术教材更新进程研究
  • 批准号:
    16K04457
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of an AHS with KABC-II factors to support hearing impaired children with dyscalculia in learning arithmetical abilities
开发具有 KABC-II 因子的 AHS,以支持患有计算障碍的听力障碍儿童学习算术能力
  • 批准号:
    16K04848
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The mean value theorem of an arithmetical error term in short intervals and its application
短区间算术误差项的中值定理及其应用
  • 批准号:
    15K04778
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Number representations and arithmetical properties of the numbers
数字的表示和算术性质
  • 批准号:
    15K17504
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Arithmetical rank of Stanley-Reisner ideals and projective dimension of their powers
斯坦利-赖斯纳理想的算术等级及其权力的投影维度
  • 批准号:
    26400049
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Relationships between development of arithmetical abilities and finger at the early childhood
幼儿期算术能力发展与手指的关系
  • 批准号:
    26780357
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Development of an AHS to support hearing impaired children with dyscalculia in improving fundamental arithmetical ability
开发 AHS 以支持患有计算障碍的听力障碍儿童提高基本算术能力
  • 批准号:
    25381326
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Relations between free resolutions and the arithmetical rank for a monomial ideal
单项式理想的自由分辨率与算术等级之间的关系
  • 批准号:
    24740008
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了