Studies on stability of solitary waves for nonlinear dispersive wave equations

非线性色散波动方程孤波稳定性研究

基本信息

  • 批准号:
    21K03315
  • 负责人:
  • 金额:
    $ 2.58万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2021
  • 资助国家:
    日本
  • 起止时间:
    2021-04-01 至 2024-03-31
  • 项目状态:
    已结题

项目摘要

研究の目的は、非線形シュレディンガー方程式や非線形クライン・ゴルドン方程式など非線形分散波動方程式の孤立波解の安定性に関する研究を推進することで ある。特に、パラメータによって孤立波解の安定性と不安定性が変わる臨界的な状況を考察し、非線形分散波動方程式の孤立波解のまわりの解の大域挙動の解明を目指している。 2022年度は2021年度に引き続き、空間1次元において引力的なデルタ関数ポテンシャルと5次の非線形相互作用および斥力的な3次の非線形相互作用をもつ非線形シュレディンガー方 程式の定在波解の安定性について考察した。空間1次元において5次の非線形項は質量 (L^2) の意味で臨界的である。劣臨界的な摂動項である引力的なデルタ関数ポテンシャルと斥力的な3次の非線形項を導入することにより、この臨界的状況は壊れるが、両者が釣り合ったとき、別の新たな臨界的状況が生じる。質量 (L^2ノルム) が臨界質量よりも真に小さい場合、考察している方程式の定在波解はすべて安定であると予想されるが、このことを中西賢次教授(京都大学数理解析研究所)との共同研究により、簡潔な変分的方法を用いた統一的な証明を与え、論文にまとめた。また、質量 (L^2ノルム) が臨界質量よりも真に大きい場合は、考察している方程式の定在波解はすべて不安定であると予想されるが、これまでは振動数がある値よりも大きい場合に対してしかこのことを証明することができなかった。この問題に対しても、定在波の新しい変分的特徴付けを導入することにより、すべての振動数に対して不安定性を証明することができた。臨界質量をもつ定在波解の不安定性については今後の研究課題である。
Research purpose の は, nonlinear シ ュ レ デ ィ ン ガ ー equation や nonlinear ク ラ イ ン · ゴ ル ド ン equation な ど scattered nonlinear wave equation is の solitary wave solution is の stability に masato す を る research advance す る こ と で あ る. に, パ ラ メ ー タ に よ っ て solitary wave solution is の stability と labile が - わ る を な situation of critical し scattered, nonlinear wave equation is の solitary wave solution is の ま わ り 挙 の big の solution domain の interpret を refers し て い る. 2022 annual は 2021 に lead き 続 き, 1 dimensional space に お い て gravity な デ ル タ masato number ポ テ ン シ ャ ル と five の nonlinear interaction お よ び repulsion な three の nonlinear interaction を も つ nonlinear シ ュ レ デ ィ ン ガ の ー party program on wave solutions の stability に つ い て investigation し た. The 1st dimension of space にお て て the 5th order of <s:1> nonlinear terms にお mass (L^2) にお implies で critical である. Inferior critical な, move items で あ る gravity な デ ル タ masato number ポ テ ン シ ャ ル と repulsion な three の nonlinear item を import す る こ と に よ り, こ の critical situation は 壊 れ る が, who struck が fishing り っ た と き, don't の new た な critical situation born が じ る. Mass (L^2ノ ム ム) が critical mass よ り も really small に さ い occasions, investigate し て い る equation is の on wave solutions は す べ て settle で あ る と to think さ れ る が, こ の こ と を Yin professor of Chinese and western (Kyoto university institute of mathematical resolution) と の joint research に よ り, concise な を - point method with い た unified な prove を and え, paper に ま と め た. ま た, quality (L ^ 2 ノ ル ム) が critical mass よ り も に really big き は い occasions, investigate し て い る equation is の on wave solutions は す べ て unrest で あ る と to think さ れ る が, こ れ ま で は vibration number が あ る numerical よ り も big き い occasions に し seaborne て し か こ の こ と を prove す る こ と が で き な か っ た. こ の problem に し seaborne て も, in the wave of new し の い - points of 徴 pay け を import す る こ と に よ り, す べ て の vibration number に し seaborne て labile を prove す る こ と が で き た. The critical mass を を を を is determined at the wave solution <s:1> unfixability に である て て て future research topics である.

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
非線形シュレディンガー方程式の定在波の強い不安定性について
非线性薛定谔方程中驻波的强不稳定性
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yasunori Kimura;Katsutoshi Shinohara;Yasunori Kimura;Yasunori Kimura;Yasunori Kimura and Keisuke Shindo;古場一;太田 雅人;水町 徹;肥田野 久二男;古場一;山﨑陽平;太田 雅人
  • 通讯作者:
    太田 雅人
Stability of standing waves for cubic-quintic nonlinear Schrodinger equation with delta potential
具有δ势的三次五次非线性薛定谔方程的驻波稳定性
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yasunori Kimura;Katsutoshi Shinohara;Yasunori Kimura;Yasunori Kimura;Yasunori Kimura and Keisuke Shindo;古場一;太田 雅人
  • 通讯作者:
    太田 雅人
デルタ関数を持つ非線形シュレディンガー方程式の定在波の安定性
具有δ函数的非线性薛定谔方程的驻波稳定性
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yasunori Kimura;Katsutoshi Shinohara;Yasunori Kimura;Yasunori Kimura;Yasunori Kimura and Keisuke Shindo;古場一;太田 雅人;水町 徹;肥田野 久二男;古場一;山﨑陽平;太田 雅人;横山 和義;水町 徹;太田 雅人
  • 通讯作者:
    太田 雅人
On cubic-quintic nonlinear Schrodinger equations with delta potential
具有δ势的三次五次非线性薛定谔方程
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yasunori Kimura;Katsutoshi Shinohara;Yasunori Kimura;Yasunori Kimura;Yasunori Kimura and Keisuke Shindo;古場一;太田 雅人;水町 徹;肥田野 久二男;古場一;山﨑陽平;太田 雅人;横山 和義;水町 徹;太田 雅人;山﨑陽平;Masahito Ohta
  • 通讯作者:
    Masahito Ohta
デルタ関数を伴う非線形シュレディンガー方程式の定在波
具有δ函数的非线性薛定谔方程的驻波
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yasunori Kimura;Katsutoshi Shinohara;Yasunori Kimura;Yasunori Kimura;Yasunori Kimura and Keisuke Shindo;古場一;太田 雅人;水町 徹;肥田野 久二男;古場一;山﨑陽平;太田 雅人;横山 和義;水町 徹;太田 雅人;山﨑陽平;Masahito Ohta;水町 徹;太田雅人
  • 通讯作者:
    太田雅人
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

太田 雅人其他文献

相転移を含む非粘性混相流の数理モデリング
无粘多相流(包括相变)的数学建模
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yasunori Kimura;Katsutoshi Shinohara;Yasunori Kimura;Yasunori Kimura;Yasunori Kimura and Keisuke Shindo;古場一;太田 雅人;水町 徹;肥田野 久二男;古場一
  • 通讯作者:
    古場一
非線形シュレディンガー方程式の孤立波の安定性解析
非线性薛定谔方程的孤波稳定性分析
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    小原功任;田島慎一;太田 雅人
  • 通讯作者:
    太田 雅人
Stability of standing waves for a system of nonlinear Schrodinger equations with cubic nonlinearity
具有三次非线性的非线性薛定谔方程组的驻波稳定性
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shinji Adachi;Masataka Shibata;Tatsuya Watanabe;太田 雅人;H.Takamura;Mathieu Colin and Tatsuya Watanabe;Ryo IKEHATA;田原秀敏;太田 雅人;Masahito Ohta
  • 通讯作者:
    Masahito Ohta
q-Analogues of Laplace and Borel transforms with application to q-difference equations
拉普拉斯和博雷尔变换的 q 类似物及其在 q 差分方程中的应用
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shinji Adachi;Masataka Shibata;Tatsuya Watanabe;太田 雅人;H.Takamura;Mathieu Colin and Tatsuya Watanabe;Ryo IKEHATA;田原秀敏;太田 雅人;Masahito Ohta;H. Tahara
  • 通讯作者:
    H. Tahara
Point-wise estimation approach to the 1-d semi-linear wave equation with the null condition
零条件下一维半线性波动方程的逐点估计方法
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yasunori Kimura;Katsutoshi Shinohara;Yasunori Kimura;Yasunori Kimura;Yasunori Kimura and Keisuke Shindo;古場一;太田 雅人;水町 徹;肥田野 久二男
  • 通讯作者:
    肥田野 久二男

太田 雅人的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('太田 雅人', 18)}}的其他基金

非線形分散型方程式の孤立波の不安定性解析
非线性色散方程的孤波不稳定性分析
  • 批准号:
    24K06803
  • 财政年份:
    2024
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Ultrafast measurement of relativistic electromagnetic radiation
相对论电磁辐射的超快测量
  • 批准号:
    23K13080
  • 财政年份:
    2023
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
無衝突ワイベル衝撃波による粒子加速に関する研究
无碰撞Weibel激波粒子加速研究
  • 批准号:
    19J20765
  • 财政年份:
    2019
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
非線形波動方程式系の解の爆発に関する研究
非线性波动方程系统解爆炸的研究
  • 批准号:
    14740099
  • 财政年份:
    2002
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
異なる伝播速度をもつ半線形波動方程式系の臨界爆発問題の研究
不同传播速度的半线性波动方程系统临界爆炸问题研究
  • 批准号:
    12740104
  • 财政年份:
    2000
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
非線形波動方程式の解の特異性の解析
非线性波动方程解的奇异性分析
  • 批准号:
    10740084
  • 财政年份:
    1998
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了