AdS/CFT correspondence at finite N
有限 N 处的 AdS/CFT 对应关系
基本信息
- 批准号:21K03569
- 负责人:
- 金额:$ 1.33万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2021
- 资助国家:日本
- 起止时间:2021-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
AdS/CFT対応はAdS時空上の重力理論あるいは弦理論と、AdS時空の境界上に定義される場の理論の等価性のことであり、場の理論や重力理論を解析する手法を提供する。場の理論のN(ゲージ群のランクに相当するパラメータ)が小さい領域では単純な古典重力が適用できないため、これまでに行われた研究の多くはNが大きいことを仮定していた。このことを踏まえ、本研究計画はAdS/CFT対応を用いてNが小さい場の理論に対してAdS側の計算を行う手法を開発することを目的としている。特に、AdS上の量子状態と境界上の場の理論の量子状態の対応関係を調べるため、超共形指数と呼ばれる物理量に注目して、その計算手法の開発を行ってきた。AdS上での計算では、有限のNにおける補正を与えるgiant gravitonと呼ばれる巻き付きブレーン(以下GG)の寄与をどのように取り込むかが主要な課題となる。2022年度は複数枚の重なったGGの寄与の計算方法において、大きな進展があった。これは、4次元の超対称ゲージ理論のみならず、M理論における、二つの極大超対称理論(6次元(2,0)理論と3次元ABJM理論)の超共形指数に対しても全く新しい計算手法を与える重要な成果である。これは、今村の単著論文としてすでに雑誌に掲載済みである。その後、オービフォールドやオリエンティフォールドと呼ばれるより一般の系に対する応用を試み、現在今村、横山およびそのほかの共同研究者との共著論文として投稿準備中である。研究費は書籍の購入や、研究集会への参加旅費として有意義に使用することができた。また、神戸大学の野海氏との研究打ち合わせにおいて、ブラックホールの量子効果と量子重力における対称性の関係についての知識提供を受け、本研究における巻き付きブレーンの寄与とブラックホールの量子効果の関係の理解を深めることができた。
AdS/CFT provides methods for analyzing gravitational theory in AdS spacetime, string theory and AdS spacetime boundary. The theory of the field N ( This study aims to develop a theoretical approach to AdS/CFT interaction. The quantum state on the surface of the particle and the quantum state on the surface of the particle are related to each other. AdS on the calculation, finite N In 2022, the calculation method of multiple weight GG and large weight GG was improved. The hyperconformal exponent of the 4-dimensional hypersymmetric theory, the M-theory, the 2-dimensional maximal hypersymmetric theory (the 6-dimensional (2, 0) theory and the 3-dimensional ABJM theory), and the new computational methods are important achievements. This is the first time I've ever written a book about this. The author of the paper is currently preparing for submission. Research fees include book purchases, research meetings, and participation expenses. The research of Nokai at Kobe University provides knowledge on the relationship between quantum effects and quantum gravity symmetry. This research aims to deepen the understanding of the relationship between quantum effects and quantum gravity.
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Finite N superconformal index via the AdS/CFT correspondence
通过 AdS/CFT 对应的有限 N 超共形索引
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:廣島渚;柿崎充;大澤周平;中竜大;Yosuke Imamura
- 通讯作者:Yosuke Imamura
Holographic index calculation for Argyres-Douglas and Minahan-Nemeschansky theories
Argyres-Douglas 和 Minahan-Nemeschansky 理论的全息指数计算
- DOI:10.1093/ptep/ptac126
- 发表时间:2022
- 期刊:
- 影响因子:3.5
- 作者:Imamura Yosuke;Murayama Shuichi
- 通讯作者:Murayama Shuichi
Analytic continuation for giant gravitons
巨引力子的解析延拓
- DOI:10.1093/ptep/ptac127
- 发表时间:2022
- 期刊:
- 影响因子:3.5
- 作者:Kawasaki Masahiro;Murai Kai;Nakatsuka Hiromasa;Imamura Yosuke
- 通讯作者:Imamura Yosuke
Finite-<i>N</i> superconformal index via the AdS/CFT correspondence
通过 AdS/CFT 对应的有限-<i>N</i> 超共形索引
- DOI:10.1093/ptep/ptab141
- 发表时间:2021
- 期刊:
- 影响因子:3.5
- 作者:鈴木良拓; 富沢真也;川崎雅裕;Keiko Nagao;Imamura Yosuke
- 通讯作者:Imamura Yosuke
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
今村 洋介其他文献
今村 洋介的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('今村 洋介', 18)}}的其他基金
弦理論の双対性を用いたゲージ理論の非摂動論的性質の解析
利用弦论对偶性分析规范论的非微扰性质
- 批准号:
15740140 - 财政年份:2003
- 资助金额:
$ 1.33万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
超対称Yang-Mills理論の非摂動論的効果と弦理論における双対性
超对称杨-米尔斯理论的非微扰效应和弦理论中的对偶性
- 批准号:
98J09110 - 财政年份:1998
- 资助金额:
$ 1.33万 - 项目类别:
Grant-in-Aid for JSPS Fellows
相似国自然基金
AdS/CFT对偶在非相对论极限下的SU(1,d)类理论的研究及对全息原理的启示
- 批准号:12305081
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
AdS/CFT对应的数学实现
- 批准号:12271253
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
AdS/CFT对偶中的数值广义相对论
- 批准号:11905298
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
用AdS/CFT研究重夸克偶素熔解
- 批准号:11705166
- 批准年份:2017
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
M理论中的AdS/CFT对偶的研究
- 批准号:11475016
- 批准年份:2014
- 资助金额:80.0 万元
- 项目类别:面上项目
AdS/CFT对偶在非平衡强耦合体系中的应用
- 批准号:11405016
- 批准年份:2014
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
AdS/CFT对偶的研究
- 批准号:11305131
- 批准年份:2013
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
AdS/CFT对偶在强耦合费米系统中的应用
- 批准号:11305018
- 批准年份:2013
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
AdS/CFT对偶中的非局域算符
- 批准号:11247231
- 批准年份:2012
- 资助金额:5.0 万元
- 项目类别:专项基金项目
AdS/CFT对应在凝聚态物理中的应用
- 批准号:11205097
- 批准年份:2012
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
対称積共形場理論を通じたAdS/CFT対応の解明
通过对称积共形场理论阐明 AdS/CFT 对应关系
- 批准号:
24KJ1374 - 财政年份:2024
- 资助金额:
$ 1.33万 - 项目类别:
Grant-in-Aid for JSPS Fellows
problem of integrability in the context of the AdS/CFT correspondence
AdS/CFT 对应关系中的可积性问题
- 批准号:
2816508 - 财政年份:2023
- 资助金额:
$ 1.33万 - 项目类别:
Studentship
Research on AdS/CFT correspondence by the generalized flow method
广义流法研究AdS/CFT对应关系
- 批准号:
22H00129 - 财政年份:2022
- 资助金额:
$ 1.33万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Supersymmetric AdS/CFT and black holes
超对称 AdS/CFT 和黑洞
- 批准号:
2757466 - 财政年份:2022
- 资助金额:
$ 1.33万 - 项目类别:
Studentship
The mathematics of the AdS/CFT correspondence
AdS/CFT 对应关系的数学
- 批准号:
RGPIN-2016-03874 - 财政年份:2021
- 资助金额:
$ 1.33万 - 项目类别:
Discovery Grants Program - Individual
AdS/CFT and the Weak Cosmic Censorship Conjecture
AdS/CFT 和弱宇宙审查猜想
- 批准号:
2603311 - 财政年份:2021
- 资助金额:
$ 1.33万 - 项目类别:
Studentship
テンソルネットワークを用いたAdS/CFT双対の研究
利用张量网络研究AdS/CFT对偶性
- 批准号:
20J23116 - 财政年份:2020
- 资助金额:
$ 1.33万 - 项目类别:
Grant-in-Aid for JSPS Fellows
AdS/CFT双対性を用いた曲がった時空での強結合場の解析
使用 AdS/CFT 对偶性分析弯曲时空中的强耦合场
- 批准号:
20K03975 - 财政年份:2020
- 资助金额:
$ 1.33万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Do matrix model and AdS/CFT correctly capture quantum properties of membranes in M-theory?
矩阵模型和 AdS/CFT 能否正确捕捉 M 理论中膜的量子特性?
- 批准号:
20K03955 - 财政年份:2020
- 资助金额:
$ 1.33万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




