Active Diagnosis based on Semantic Web Technologies for Dis-tributed Embedded Real-Time Systems (ADISTES)
基于语义网技术的分布式嵌入式实时系统(ADISTES)的主动诊断
基本信息
- 批准号:298610080
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2016
- 资助国家:德国
- 起止时间:2015-12-31 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Active diagnosis aims at significantly improving system reliability by using diagnostic information at run-time for fault isolation and online error recovery. Active diagnosis for open embedded real-time systems (e.g., health management and medical systems) is an open research problem due to stringent real-time and reliability requirements in combination with constituent components that are unknown at design time.The proposed project will extend semantic techniques, usually used in large-scale IT systems, for active diagnosis in open embedded real-time systems. We will develop modeling techniques for expressing diagnostic features, symptoms, faults and recovery actions. Methods for distributed knowledge management will establish relaxed consistency while ensuring real-time constraints. Real-time inference will be investigated based on the time-triggered scheduling of diagnostic queries. The goal of query transformations, semantic transformations and goal-oriented learning will be improved schedulability and reliability. The methods and algorithms will be prototypically implemented, as well as experimentally and analytically evaluated concerning reliability and timeliness.Major contributions beyond the state-of-the-art include (1) modeling techniques for a diagnostic knowledge base, (2) time-triggered scheduling and optimizations of diagnostic queries for real-time inference (3) distributed knowledge management with relaxed consistency, and (4) goal-oriented self-learning for active diagnosis in open embedded systems.
主动诊断的目的是利用运行时的诊断信息进行故障隔离和在线故障恢复,从而显著提高系统的可靠性。开放式嵌入式实时系统(如健康管理和医疗系统)的主动诊断是一个开放的研究问题,因为它具有严格的实时性和可靠性要求,并且在设计时不知道组成组件。该项目将扩展通常用于大型IT系统的语义技术,用于开放式嵌入式实时系统的主动诊断。我们将开发用于表示诊断特征、症状、故障和恢复操作的建模技术。分布式知识管理方法将在保证约束实时性的同时建立宽松的一致性。实时推理将基于时间触发的诊断查询调度进行研究。查询转换、语义转换和面向目标学习的目标是提高可调度性和可靠性。这些方法和算法将以原型实施,并对可靠性和及时性进行实验和分析评估。主要贡献包括(1)诊断知识库的建模技术,(2)实时推理的诊断查询的时间触发调度和优化,(3)具有宽松一致性的分布式知识管理,以及(4)开放式嵌入式系统中主动诊断的面向目标的自学习。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Class-based query-optimization for minimizing worst-case execution times of diagnostic queries in embedded real-time systems
基于类的查询优化,可最大限度地减少嵌入式实时系统中诊断查询的最坏情况执行时间
- DOI:10.1109/indin.2017.8104849
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:N. Tabassam;R. Obermaisser
- 通讯作者:R. Obermaisser
Time-triggered scheduling of query executions for active diagnosis in distributed real-time systems
分布式实时系统中主动诊断的时间触发查询执行调度
- DOI:10.1109/etfa.2017.8247610
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:S. Amin;R. Obermaisser
- 通讯作者:R. Obermaisser
A Graph-Based Sensor Fault Detection and Diagnosis for Demand-Controlled Ventilation Systems Extracted from a Semantic Ontology
从语义本体中提取的基于图形的需求控制通风系统传感器故障检测和诊断
- DOI:10.1109/ines.2018.8523895
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:A. Mallak;A. Behravan;C. Weber;M. Fathi;R. Obermaisser
- 通讯作者:R. Obermaisser
Minimizing the Make Span of Diagnostic Multi-Query Graphs Using Graph Pruning and Query Merging
使用图修剪和查询合并最小化诊断多查询图的生成跨度
- DOI:10.1109/etfa.2018.8502626
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:N. Tabassam;R. Obermaisser
- 通讯作者:R. Obermaisser
Minimizing the Worst Case Execution Time of Diagnostic Fault Queries in Real Time Systems Using Genetic Algorithm
使用遗传算法最小化实时系统中诊断故障查询的最坏情况执行时间
- DOI:10.1007/978-3-030-17798-0_46
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:N. Tabassam;S. Amin;R. Obermaisser
- 通讯作者:R. Obermaisser
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr.-Ing. Madjid Fathi其他文献
Professor Dr.-Ing. Madjid Fathi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
A novel damage characterization technique based on adaptive deconvolution extraction algorithm of multivariate AE signals for accurate diagnosis of osteoarthritic knees
基于多变量 AE 信号自适应反卷积提取算法的新型损伤表征技术,用于准确诊断膝关节骨关节炎
- 批准号:
24K07389 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Biomarker-Based Platform for Early Diagnosis of Chronic Liver Disease to Enable Personalized Therapy (LIVERAIM)
基于生物标志物的慢性肝病早期诊断平台,以实现个性化治疗(LIVERAIM)
- 批准号:
10087822 - 财政年份:2024
- 资助金额:
-- - 项目类别:
EU-Funded
Metal-Organic Framework-Based Gas Sensors: Structural Engineering for Early Diabetes Diagnosis and Monitoring (SEEDDM)
基于金属有机框架的气体传感器:早期糖尿病诊断和监测的结构工程 (SEEDDM)
- 批准号:
EP/Y002318/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Upconversion nanoparticle-based optical biosensor for early diagnosis of stroke
基于上转换纳米粒子的光学生物传感器用于中风的早期诊断
- 批准号:
MR/Y503460/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
I-Corps: Machine Learning-Based Burn Injury Diagnosis and Care
I-Corps:基于机器学习的烧伤诊断和护理
- 批准号:
2326781 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Screening of circulating Schistosoma japonicum antigen for development of SE antigen-based diagnosis
筛选循环日本血吸虫抗原以开发基于 SE 抗原的诊断
- 批准号:
23KF0131 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Clinical breast cancer risk prediction models for women with a high-risk benign breast diagnosis
高风险良性乳腺诊断女性的临床乳腺癌风险预测模型
- 批准号:
10719777 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Establishment of photodynamic diagnosis for apical periodontitis based on 5-ALA fluorescence live imaging
基于5-ALA荧光实时成像的根尖周炎光动力诊断方法的建立
- 批准号:
23K09188 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
AI-based diagnosis for improving classification of bone and soft tissue tumours across the UK
基于人工智能的诊断可改善英国骨和软组织肿瘤的分类
- 批准号:
EP/Y020030/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
Assessment of a Radiomics-Based Computer-Aided Diagnosis Tool for Cancer Risk Stratification of Pulmonary Nodules
基于放射组学的计算机辅助诊断工具对肺结节癌症风险分层的评估
- 批准号:
10644765 - 财政年份:2023
- 资助金额:
-- - 项目类别:














{{item.name}}会员




