AI-based diagnosis for improving classification of bone and soft tissue tumours across the UK

基于人工智能的诊断可改善英国骨和软组织肿瘤的分类

基本信息

  • 批准号:
    EP/Y020030/1
  • 负责人:
  • 金额:
    $ 78.13万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

Delivery of pathology tissue diagnoses, most of which are cancer, in the current format is unsustainable. Advances in genomic medicine and immune-oncology have shown that the classification of tumours into subtypes allows selection of patients for specific treatments but also spares patients unnecessary toxic and expensive therapies. Still, making such diagnoses has become more time-consuming, involving the selection and interpretation of ancillary tests which requires an ever-growing specialist knowledge for each cancer type. Whilst the need for diagnostic expertise is increasing, there is already a shortfall of 25% of pathologists who are able to report results: this is set to decline.We propose that the use of AI can ensure that the delivery of tissue diagnoses by pathologists is sustainable and supports delivery of personalised treatments. The benefits of AI in pathology are beginning to be seen, e.g. identification of high-grade areas of prostate cancer shows a reduction in errors and pathologists' time. The development of AI for diagnoses is timely as full adoption of digitised histological images, allowing them to be interrogated by both humans and artificial intelligence (AI), is expected in the UK by 2025. AI is a data-hungry process; it is unrealistic to provide 100,000s images that are required to train a model. Even the most common cancers (e.g. breast) have multiple subtypes; identification of these is required for selection of patients for personalised treatments. To address this challenge, we propose to develop a novel AI strategy using a relatively small sample size (~1000 images per class). Such a model could be adapted to any cancer type. A multiple-instance learning framework will be developed, using transformers for feature extraction and classification. A tool that flags samples that cannot be confidently classified will be applied thereby alerting the pathologist of potentially unseen diseases. The deep learning model will be strengthened by the injection of pathologists' domain knowledge. Soft tissue and bone tumoursWe will develop the AI model on tumours of soft tissue (muscle, fat, blood vessels, etc.) and bone, an area considered to be one of the most challenging diagnostically. These tumours comprise approximately 100 different subtypes, and represent some of the most common cancers in children and young adults. We will build on our existing deep learning model of 15 different subtypes trained on 2122 images, which predicts the correct diagnosis in 87% of cases. Selection of confirmatory ancillary tests is then prompted by the algorithm and streamlines the diagnostic pathway. 17,000 images that have already been scanned will be added to the library and allow the rapid development and extension of the classification model. The image library will be linked to clinical outcomes and expanded to 35,000 images during the project. Added to this is the commitment of the established Sarcoma Network of at least 20 pathologists from across all countries in the UK, to provide the additional 20,000 images mentioned above. Additional benefitsThe study and infrastructure will serve as the framework for the continued development of the model which can rapidly be expanded prospectively with the introduction of digital pathology in the NHS and globally. The model can be developed over time in response to new advances. The image library will be available for training future pathologists, research, validation of other AI algorithms, and contribute to the Sarcoma Genomics England Clinical Interpretation Partnership (GeCIP) offering a valuable resource for future multi-modal multi-omic research.Working closely with Sarcoma charities, and partners, we will involve and engage patients, their families, and the public, to build trust in the use of AI in health care. Development of AI models for digitised pathology images can avert the crisis facing this medical specialty.
以目前的形式提供病理组织诊断,其中大多数是癌症,是不可持续的。基因组医学和免疫肿瘤学的进展表明,将肿瘤分类为亚型可以选择患者进行特定治疗,但也可以使患者免于不必要的毒性和昂贵的治疗。尽管如此,做出这样的诊断已经变得更加耗时,涉及辅助测试的选择和解释,这需要对每种癌症类型不断增长的专业知识。虽然对诊断专业知识的需求正在增加,但能够报告结果的病理学家已经短缺了25%:这将下降。我们建议使用AI可以确保病理学家提供的组织诊断是可持续的,并支持提供个性化治疗。人工智能在病理学中的好处已经开始显现,例如,前列腺癌高级别区域的识别显示出错误和病理学家时间的减少。人工智能诊断的发展是及时的,因为预计到2025年,英国将全面采用数字化组织学图像,允许人类和人工智能(AI)对其进行询问。人工智能是一个数据饥渴的过程;提供训练模型所需的10万张图像是不现实的。即使是最常见的癌症(如乳腺癌)也有多种亚型;需要识别这些亚型才能选择患者进行个性化治疗。为了应对这一挑战,我们建议使用相对较小的样本量(每个类约1000张图像)开发一种新的AI策略。这种模型可以适用于任何癌症类型。将开发一个多实例学习框架,使用变压器进行特征提取和分类。将应用一种标记无法自信地分类的样本的工具,从而提醒病理学家潜在的不可见疾病。通过注入病理学家的领域知识,深度学习模型将得到加强。软组织和骨肿瘤我们将开发软组织(肌肉、脂肪、血管等)肿瘤的AI模型。和骨,这是一个被认为是最具挑战性的诊断领域之一。这些肿瘤包括大约100种不同的亚型,代表了儿童和年轻人中最常见的一些癌症。我们将在现有的深度学习模型基础上构建15种不同的亚型,这些亚型在2122张图像上训练,预测87%的病例的正确诊断。然后通过算法提示选择确认性辅助测试,并简化诊断途径。已经扫描的17 000张图像将被添加到图书馆,并允许快速开发和扩展分类模型。图像库将与临床结果相关联,并在项目期间扩展到35,000张图像。此外,来自英国所有国家的至少20名病理学家组成的肉瘤网络承诺提供上述额外的20,000张图像。该研究和基础设施将作为该模型持续发展的框架,随着NHS和全球数字病理学的引入,该模型可以迅速扩展。随着时间的推移,该模型可以随着新的进展而发展。该图像库将用于培训未来的病理学家、研究、验证其他AI算法,并为英国肉瘤基因组学临床解释合作伙伴关系(GeCIP)做出贡献,为未来的多模式多组学研究提供宝贵的资源。与肉瘤慈善机构和合作伙伴密切合作,我们将让患者、他们的家人和公众参与进来,在医疗保健中使用人工智能建立信任。为数字化病理图像开发人工智能模型可以避免这一医学专业面临的危机。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Charles-Antoine Collins-Fekete其他文献

1617: A comparison of carbon ions versus protons for integrated mode ion imaging
1617:碳离子与质子的比较
  • DOI:
    10.1016/s0167-8140(24)01984-4
  • 发表时间:
    2024-05-01
  • 期刊:
  • 影响因子:
    5.300
  • 作者:
    Mikaël Simard;Ryan Fullarton;Lennart Volz;Christoph Schuy;Daniel Robertson;Allison Toltz;Colin Baker;Sam Beddar;Christian Graeff;Charles-Antoine Collins-Fekete
  • 通讯作者:
    Charles-Antoine Collins-Fekete
A deep learning framework deploying segment anything to detect pan-cancer mitotic figures from haematoxylin and eosin-stained slides
一个部署了分割一切(Segment Anything)以从苏木精和伊红染色的载玻片检测泛癌有丝分裂图的深度学习框架
  • DOI:
    10.1038/s42003-024-07398-6
  • 发表时间:
    2024-12-19
  • 期刊:
  • 影响因子:
    5.100
  • 作者:
    Zhuoyan Shen;Mikaël Simard;Douglas Brand;Vanghelita Andrei;Ali Al-Khader;Fatine Oumlil;Katherine Trevers;Thomas Butters;Simon Haefliger;Eleanna Kara;Fernanda Amary;Roberto Tirabosco;Paul Cool;Gary Royle;Maria A. Hawkins;Adrienne M. Flanagan;Charles-Antoine Collins-Fekete
  • 通讯作者:
    Charles-Antoine Collins-Fekete
Monte Carlo calculation of the dose perturbations in a dual-source HDR/PDR afterloader treatment unit
  • DOI:
    10.1016/j.brachy.2016.03.007
  • 发表时间:
    2016-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Charles-Antoine Collins-Fekete;Mathieu Plamondon;Frank Verhaegen;Luc Beaulieu
  • 通讯作者:
    Luc Beaulieu
1294: A Multi-Omics Database Using Clinical Trial Data for Rectal Cancer Radiotherapy Outcome Prediction
1294:使用临床试验数据进行直肠癌放射疗法结果预测的多组学数据库
  • DOI:
    10.1016/s0167-8140(24)01721-3
  • 发表时间:
    2024-05-01
  • 期刊:
  • 影响因子:
    5.300
  • 作者:
    Zhuoyan Shen;Douglas Brand;Mikael Simard;Ying Zhang;Gary Royle;Andre Lopes;Rubina Begum;Nicholas West;Ane Appelt;Alexandra Gilbert;Elizabeth Miles;Tim Maughan;David Sebag-Montefiore;Charles-Antoine Collins-Fekete;Maria A. Hawkins
  • 通讯作者:
    Maria A. Hawkins
1486 Evaluating efficacy of two AI auto-contouring algorithms for abdominal organs at risk (OAR) delineated in liver stereotactic body radiotherapy (SBRT)
1486评估两种人工智能自动轮廓绘制算法在肝脏立体定向体部放疗(SBRT)中对腹部危及器官(OAR)勾画的有效性
  • DOI:
    10.1016/s0167-8140(25)00491-8
  • 发表时间:
    2025-05-01
  • 期刊:
  • 影响因子:
    5.300
  • 作者:
    Matthew Lee;Han Cheng;Minxuan Yuan;Glen Blackman;Tom Richards;Charles-Antoine Collins-Fekete;Maria Hawkins;Douglas Brand
  • 通讯作者:
    Douglas Brand

Charles-Antoine Collins-Fekete的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Charles-Antoine Collins-Fekete', 18)}}的其他基金

Personalised lung cancer treatment through outcomes predictions and patient stratification
通过结果预测和患者分层进行个性化肺癌治疗
  • 批准号:
    MR/T040785/1
  • 财政年份:
    2020
  • 资助金额:
    $ 78.13万
  • 项目类别:
    Fellowship

相似国自然基金

Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
  • 批准号:
    W2433169
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
含Re、Ru先进镍基单晶高温合金中TCP相成核—生长机理的原位动态研究
  • 批准号:
    52301178
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
NbZrTi基多主元合金中化学不均匀性对辐照行为的影响研究
  • 批准号:
    12305290
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
眼表菌群影响糖尿病患者干眼发生的人群流行病学研究
  • 批准号:
    82371110
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
镍基UNS N10003合金辐照位错环演化机制及其对力学性能的影响研究
  • 批准号:
    12375280
  • 批准年份:
    2023
  • 资助金额:
    53.00 万元
  • 项目类别:
    面上项目
CuAgSe基热电材料的结构特性与构效关系研究
  • 批准号:
    22375214
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
基于大数据定量研究城市化对中国季节性流感传播的影响及其机理
  • 批准号:
    82003509
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

AI-based Fall-Risk Assessment during Daily Activities in Post Stroke Survivors using Smartphones
使用智能手机对中风后幸存者进行日常活动期间基于人工智能的跌倒风险评估
  • 批准号:
    10580558
  • 财政年份:
    2023
  • 资助金额:
    $ 78.13万
  • 项目类别:
Validation of artificial intelligence (AI) based software as medical device (SaMD) for retinopathy of prematurity (ROP)
验证基于人工智能 (AI) 的软件作为治疗早产儿视网膜病变 (ROP) 的医疗设备 (SaMD)
  • 批准号:
    10760401
  • 财政年份:
    2023
  • 资助金额:
    $ 78.13万
  • 项目类别:
AI-based Cardiac CT
基于人工智能的心脏CT
  • 批准号:
    10654259
  • 财政年份:
    2023
  • 资助金额:
    $ 78.13万
  • 项目类别:
Multimodal AI-based Diagnosis of Autism Spectrum Disorder (ASD)
基于多模态人工智能的自闭症谱系障碍 (ASD) 诊断
  • 批准号:
    2883676
  • 财政年份:
    2023
  • 资助金额:
    $ 78.13万
  • 项目类别:
    Studentship
Generative-AI based system for accurate prediction of deceased donor liver-transplant (DDLT) outcome and viability
基于生成人工智能的系统,可准确预测已故供体肝移植 (DDLT) 的结果和生存能力
  • 批准号:
    10654166
  • 财政年份:
    2023
  • 资助金额:
    $ 78.13万
  • 项目类别:
ECG-AI Based Prediction and Phenotyping of Heart Failure with Preserved Ejection Fraction
基于 ECG-AI 的射血分数保留的心力衰竭预测和表型分析
  • 批准号:
    10717312
  • 财政年份:
    2023
  • 资助金额:
    $ 78.13万
  • 项目类别:
Feasibility testing of a novel AI-enabled, cloud-based ECG diagnostic solution to enable fast and affordable diagnosis in long-term continuous ambulatory ECG monitoring
对新型人工智能、基于云的心电图诊断解决方案进行可行性测试,以在长期连续动态心电图监测中实现快速且经济实惠的诊断
  • 批准号:
    10545691
  • 财政年份:
    2022
  • 资助金额:
    $ 78.13万
  • 项目类别:
Development of a AI-based medical device program for early diagnosis of postoperative recurrence of colorectal cancer
开发基于人工智能的结直肠癌术后复发早期诊断医疗器械程序
  • 批准号:
    22K15832
  • 财政年份:
    2022
  • 资助金额:
    $ 78.13万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Feasibility testing of a novel AI-enabled, cloud-based ECG diagnostic solution to enable fast and affordable diagnosis in long-term continuous ambulatory ECG monitoring
对新型人工智能、基于云的心电图诊断解决方案进行可行性测试,以在长期连续动态心电图监测中实现快速且经济实惠的诊断
  • 批准号:
    10742360
  • 财政年份:
    2022
  • 资助金额:
    $ 78.13万
  • 项目类别:
AI-Aided Tool for Day Zero Selection of High Performing Cells for Biopharma Cell Line Development
用于生物制药细胞系开发的高性能细胞零日选择的人工智能辅助工具
  • 批准号:
    10546865
  • 财政年份:
    2022
  • 资助金额:
    $ 78.13万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了