Micromechanical and microstructural investigations of monocrystalline face-centred cubic high- and medium-entropy alloys
单晶面心立方高、中熵合金的微观力学和微观结构研究
基本信息
- 批准号:310751327
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2016
- 资助国家:德国
- 起止时间:2015-12-31 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Recently, a novel class of materials, high- and medium-entropy alloys (HEAs/MEAs) containing multiple principal elements in roughly equal atomic parts, has taken the scientific world by storm. In polycrystalline HEAs/MEAs, strength depends on the type and number of alloying elements, but a rigorous understanding of basic mechanisms is lacking. To deepen our scientific understanding of alloying effects, it is vital to test single crystals so that friction stresses can be evaluated on the activated slip systems as a function of composition and correlated with the underlying dislocation processes. Since growth of bulk single crystals is tedious and not always feasible, we plan to perform micromechanical tests on micropillar and microtensile specimens prepared by focused ion beam (FIB) milling from individual (single crystal) grains of polycrystalline materials. This will allow us to use conventional processing (melting, casting, homogenization, rolling, recrystallization, grain growth) to make any desired alloy. Initially, face-centered cubic HEAs/MEAs based on various combinations of Cr, Mn, Fe, Co and Ni will be investigated. Effects of elemental substitutions (Pd, Cu, Al, Cu+Al) deliberately chosen to uncover specific mechanisms will then be probed as well as deviations from equiatomic compositions. In other words, the number, concentration, and type of alloying elements, will be varied to evaluate the influence of fundamental parameters such as atomic size/mass, elastic modulus, and stacking fault energy, on microstructure and mechanical properties. Some of the micromechanical tests will be performed in situ in a scanning electron microscope to correlate yield point phenomena on the load-displacement curves with physical slip events on the specimen surfaces in real time. Critical resolved shear stress will be determined as a function of orientation and composition, and the validity of Schmids law will be checked. Microtensile tests will be conducted to check for tension-compression asymmetries. Since microstructural analysis is crucial to the interpretation of these results, TEM foils will be extracted and examined before and after interrupted mechanical tests (different amounts of strain) to characterize the single-phase nature of the alloys, deformation microstructures (twins, stacking faults, dislocations, etc.), and how compositional complexity affects microstructure, slip character and plasticity. Slip behavior will be correlated with heat treatment and chemical composition for possible short range ordering effects. To check whether dislocation core configurations are responsible for higher friction stresses, we will investigate dislocation cores as a function of compositional complexity. The knowledge gained from this project will contribute to a better understanding of alloying effects on the mechanical properties of concentrated, massively alloyed, solid solutions whose behavior cannot be explained by textbook theories.
最近,一类新型材料--高熵和中熵合金(HEAs/MEAs),含有原子部分大致相等的多种主要元素,在科学界引起了轰动。在多晶HEAs/MEA中,强度取决于合金元素的类型和数量,但缺乏对基本机制的严格理解。为了加深我们对合金化效应的科学理解,测试单晶体至关重要,这样就可以在激活的滑移系上评估摩擦应力作为成分的函数,并与潜在的位错过程相关联。由于大块单晶的生长很乏味,而且并不总是可行,我们计划对通过聚焦离子束(FIB)铣削从多晶材料的单个(单晶)颗粒制备的微柱和微拉伸样本进行微力学测试。这将使我们能够使用常规加工(熔化,铸造,均质化,轧制,再结晶,晶粒生长)来制造任何所需的合金。首先,面心立方HEAs/MEA的基础上的各种组合的Cr,Mn,Fe,Co和Ni将进行研究。然后将探测故意选择以揭示特定机制的元素取代(Pd,Cu,Al,Cu + Al)的影响以及与等原子组成的偏差。换句话说,合金元素的数量、浓度和类型将变化以评估基本参数(例如原子尺寸/质量、弹性模量和堆垛层错能)对微观结构和机械性能的影响。将在扫描电子显微镜中原位进行一些微观力学测试,以将载荷-位移曲线上的屈服点现象与试样表面上的物理滑移事件在真实的时间内相关联。临界分解剪应力将被确定为取向和成分的函数,并将检查Schloss定律的有效性。将进行微拉伸试验,以检查拉伸-压缩不对称性。由于微观结构分析对于解释这些结果至关重要,因此在中断的机械试验(不同的应变量)之前和之后将提取和检查TEM箔,以表征合金的单相性质、变形微观结构(孪晶、堆垛层错、位错等),以及成分复杂性如何影响微观结构、滑移特征和塑性。滑移行为将与热处理和可能的短程有序效应的化学成分相关。要检查是否位错核心配置负责较高的摩擦应力,我们将调查位错核心作为组成复杂性的函数。从这个项目中获得的知识将有助于更好地理解合金化对浓缩的、大规模合金化的固溶体的机械性能的影响,这些固溶体的行为不能用教科书理论来解释。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr.-Ing. Gunther Eggeler, since 1/2017其他文献
Professor Dr.-Ing. Gunther Eggeler, since 1/2017的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
- 批准号:
2347345 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
- 批准号:
2347344 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Formulating microstructural equivalence: A route to consistent scale-up of medicine manufacture
制定微观结构等效性:药物生产持续扩大规模的途径
- 批准号:
EP/Z532988/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
CAREER: Cyberinfrastructure for Printable Multifunctional Microstructural Materials
职业:可打印多功能微结构材料的网络基础设施
- 批准号:
2339764 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Design of high fatigue strength ferrite-martensite steel based on microstructural control and strengthening mechanisms
基于显微组织控制和强化机制的高疲劳强度铁素体-马氏体钢设计
- 批准号:
22KJ1400 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
CAREER: Microstructural Engineering of Solid Composite Electrolytes through Process Manipulation
职业:通过工艺操纵进行固体复合电解质的微观结构工程
- 批准号:
2237878 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Microstructural Evolution during Superplastic Ice Creep
超塑性冰蠕变过程中的微观结构演化
- 批准号:
2317263 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Microstructural imaging of the tumour microenvironment: towards virtual biopsy of prostate cancer
肿瘤微环境的微观结构成像:前列腺癌的虚拟活检
- 批准号:
2902117 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Magnetic resonance based quantitative assessment of myocardial microvascular and microstructural function using STEAM-tIVIM
使用 STEAM-tIVIM 基于磁共振的心肌微血管和微结构功能定量评估
- 批准号:
EP/X014010/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
Microstructural Injury to the Brainstem and Spinal Cord Determines Outcomes in CM and SM
脑干和脊髓的微结构损伤决定 CM 和 SM 的结果
- 批准号:
10629123 - 财政年份:2023
- 资助金额:
-- - 项目类别: