Hierarchical models for the recognition of human activities in video data
用于识别视频数据中人类活动的分层模型
基本信息
- 批准号:311269674
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2016
- 资助国家:德国
- 起止时间:2015-12-31 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
With the growing amount of video data recorded and distributed everyday there is also a growing need for automated processing. To address the complexity of these data, video-based action recognition needs to advance from simple classification of pre-segmented clips with only one clearly defined activity towards the analysis of longer video sequences. First approaches to deal with the recognition of those sequences have been made, but they usually consider stringent timelines without regarding the specific hierarchical nature of human activities. The proposed project fills this gap by focusing on the analysis of temporal hierarchies of human activities in video sequences. It is assumed that human activities are made up of basic building blocks that can be subsumed over several stages to form larger, meaningful activities. In this context, this work aims at the exploration of hierarchical temporal structures for video-based action recognition with the goal is to analyze and recognize complex human activities in videos. To transfer hierarchical models to real action recognition scenarios, a three-stage approach is proposed. First, a bottom-up recognition system for human actions based on small temporal entities will be built. The entities will be concatenated and pooled over several temporal layers to build a high-level representation. The system will be built on generative models, as they have been successfully applied in the context of similar problems. Second, to avoid the task of labeling data, semi- and unsupervised training procedures will be implemented and evaluated. Therefore, existing unlabeled training material will be segmented and clustered, either in a semi- or unsupervised way and the resulting units will form the input for an automatically generated grammar and language format. The resulting training procedure should be able to segment a given training set into small parts, to combine them by clustering, and to build an overall representation of the activity domain by the generation of a grammar based on the defined entities. Third, as the system provides for generative, temporal modeling over time, those properties will be exploited with regard to its potential in integrating context knowledge: the generative nature of the overall model allows easy integration of context in the form of probability distributions at any stage of the recognition process and the temporal modeling provides not only an integration of context but also the assessment of context, e.g. in the form of object states, over time. The overall final system should provide both hierarchical recognition and analysis of human actions with regard to environmental context as well as the training routines needed to apply this model to a large variety of different datasets and application domains. We hope that the system will provide new ways to deal with the challenges of analyzing complex activities over time and that it will allow new applications in this field.
随着每天记录和分发的视频数据量不断增加,对自动化处理的需求也越来越大。为了解决这些数据的复杂性,基于视频的动作识别需要从仅具有一个明确定义的活动的预分割片段的简单分类推进到更长视频序列的分析。处理这些序列的识别的第一种方法已经提出,但它们通常考虑严格的时间表,而不考虑人类活动的具体层次性质。拟议的项目填补了这一空白,专注于分析的时间层次的人类活动的视频序列。它假设人类活动是由基本的积木组成的,这些积木可以被归入几个阶段,形成更大的、有意义的活动。在这种情况下,这项工作的目的是探索基于视频的动作识别的层次时间结构,其目标是分析和识别视频中复杂的人类活动。为了将层次模型转换为真实的动作识别场景,提出了一种三阶段方法。首先,将建立一个基于小时间实体的自底向上的人类动作识别系统。这些实体将在几个时间层上连接和合并,以构建高级表示。该系统将建立在生成模型,因为它们已成功地应用于类似的问题。其次,为了避免标记数据的任务,将实施和评估半监督和无监督的训练程序。因此,现有的未标记的训练材料将以半监督或无监督的方式被分割和聚类,并且所得到的单元将形成用于自动生成的语法和语言格式的输入。所得到的训练过程应该能够将给定的训练集分割成小部分,通过聚类将它们联合收割机组合,并且通过基于所定义的实体生成语法来构建活动域的总体表示。第三,由于系统提供随时间推移的生成性时间建模,因此将利用这些属性来整合上下文知识:整个模型的生成特性允许在识别过程的任何阶段以概率分布的形式容易地集成上下文,并且时间建模不仅提供上下文的集成而且提供上下文的评估,例如以对象状态的形式随时间变化。整个最终系统应该提供人类行为的分层识别和分析,以及将该模型应用于各种不同的数据集和应用领域所需的训练例程。我们希望该系统将提供新的方法来应对随着时间的推移分析复杂活动的挑战,并将允许在这一领域的新应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dr. Hildegard Kühne其他文献
Dr. Hildegard Kühne的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
河北南部地区灰霾的来源和形成机制研究
- 批准号:41105105
- 批准年份:2011
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
保险风险模型、投资组合及相关课题研究
- 批准号:10971157
- 批准年份:2009
- 资助金额:24.0 万元
- 项目类别:面上项目
RKTG对ERK信号通路的调控和肿瘤生成的影响
- 批准号:30830037
- 批准年份:2008
- 资助金额:190.0 万元
- 项目类别:重点项目
新型手性NAD(P)H Models合成及生化模拟
- 批准号:20472090
- 批准年份:2004
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
Context-Adaptive Heterogeneous Models for Human Activity Recognition
用于人类活动识别的上下文自适应异构模型
- 批准号:
2812914 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Is gestational sleep apnea a previously unrecognized cause of maternal immune activation that predisposes male offspring to disease-relevant neural dysfunction?
妊娠期睡眠呼吸暂停是否是一种以前未被认识到的母体免疫激活的原因,导致男性后代容易出现与疾病相关的神经功能障碍?
- 批准号:
10680972 - 财政年份:2023
- 资助金额:
-- - 项目类别:
A Refined Murine Model of Post-sepsis Cognitive Impairment for Investigating Mitochondrial Abnormalities and Human ApoE4 Gene Polymorphisms
用于研究线粒体异常和人类 ApoE4 基因多态性的精制脓毒症后认知障碍小鼠模型
- 批准号:
10646579 - 财政年份:2023
- 资助金额:
-- - 项目类别:
GPR39 as a Therapeutic Target in Aging-Related Vascular Cognitive Impairment and Dementia
GPR39 作为衰老相关血管认知障碍和痴呆的治疗靶点
- 批准号:
10734713 - 财政年份:2023
- 资助金额:
-- - 项目类别:
ALTERING THE IMMUNE LANDSCAPE TO AUGMENT BONE REGENERATION
改变免疫景观以增强骨再生
- 批准号:
10727797 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Changes in apical cochlear mechanics after cochlear implantation
人工耳蜗植入后耳蜗顶端力学的变化
- 批准号:
10730981 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Intestinal Microbiota Affect Stroke Outcome by Modulating the Dendritic Cell-regulatory T Cell Axis
肠道微生物群通过调节树突状细胞调节 T 细胞轴影响中风结果
- 批准号:
10751249 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Environmental factors in pathobiology of dementia: the role of PCB exposure, microbiome, and tissue barrier dysfunction
痴呆病理学中的环境因素:PCB 暴露、微生物组和组织屏障功能障碍的作用
- 批准号:
10558120 - 财政年份:2023
- 资助金额:
-- - 项目类别:
DDALAB: Identifying Latent States from Neural Recordings with Nonlinear Causal Analysis
DDALAB:通过非线性因果分析从神经记录中识别潜在状态
- 批准号:
10643212 - 财政年份:2023
- 资助金额:
-- - 项目类别: