Simulation-based Parameter Optimisation and Uncertainty Analysis Methods for Reaction-Diffusion-Advection Equations
基于仿真的反应扩散平流方程参数优化和不确定性分析方法
基本信息
- 批准号:311889786
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2016
- 资助国家:德国
- 起止时间:2015-12-31 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Reaction-diffusion-advection equations are used in many fields of engineering and natural sciences to model spatio-temporal processes. As the parameters of these mathematical models are often unknown, they have to be determined from the available experimental data. Here, the first step is usually to employ optimisation to determine the parameter values yielding the best match of the model prediction and the experimental data. In the second step, the uncertainty of these parameter values is analysed to determine the predictive power of the model. In both steps constraint optimisation problems have to be solved. For this reliable optimisation algorithms are required which converge robustly. Available methods however fail to meet these reliability requirements for a variety of models.The aim of this project is to develop a novel simulation-based optimisation approach for reaction-diffusion-advection equations, which is considerable more reliable by exploiting the structure of the optimisation problem. Using methods from control engineering and optimisation theory, we will formulate a coupled system of ordinary differential equations (ODEs) and partial differential equations (PDEs), which has the optima of the optimisation problem as equilibrium points. This enables the use of adaptive numerical methods for solving optimisation problems with PDE constraints. This simulation-based approach will allow for more robust convergence than simple step-size controls used in existing optimisation methods. For ODE constrained problems, for which we developed a similar optimisation approach, we were already able to demonstrate these improved properties.The optimisation approaches developed in the project will be employed to determine the optimal parameter values (Step 1) and to perform uncertainty analysis using profile likelihoods (Step 2). Profile likelihoods are mostly calculated by repeated optimisation, this process is however computationally demanding. We modify the coupled ODE-PDE systems used for optimisation, such that they evolve along the individual profiles. Accordingly, the simulation of these reformulated coupled ODE-PDE systems will replace the repeated optimisation and reduce the computation time.To evaluate and improve the developed optimisation and uncertainty analysis approaches, we will compare them with state-of-the-art algorithms we are using in other projects (e.g. Ipopt, NLPQLP and the MATLAB routine fmincon). We will use the methods to study lateral line formation in zebrafish. This process is described by a highly non-linear system of coupled reaction-diffusion-advection equations and existing optimisation methods have severe convergence problems. Therefore, this example is very well suited for the evaluation of developed approaches. Beyond the pure method development, this project could provide new insights into the development of complex neuronal structures during lateral line formation.
反应-扩散-平流方程在工程和自然科学的许多领域都被用来模拟时空过程。由于这些数学模型的参数往往是未知的,它们必须根据现有的实验数据来确定。在这里,第一步通常是使用最优化来确定参数值,以产生模型预测和实验数据的最佳匹配。在第二步中,分析这些参数值的不确定性,以确定模型的预测能力。在这两个步骤中,都必须解决约束优化问题。为此,需要可靠的优化算法来稳健地收敛。然而,现有的方法不能满足各种模型的可靠性要求。本项目的目的是开发一种新的基于模拟的反应-扩散-平流方程的优化方法,该方法通过利用优化问题的结构来获得更可靠的结果。利用控制工程和最优化理论的方法,我们将建立一个以优化问题的最优解为平衡点的常微分方程组和偏微分方程组的耦合系统。这使得能够使用自适应数值方法来解决具有PDE约束的优化问题。这种基于模拟的方法将允许比现有优化方法中使用的简单步长控制更稳健的收敛。对于ODE约束问题,我们已经开发了类似的优化方法,我们已经能够证明这些改进的性质。项目中开发的优化方法将用于确定最优参数值(步骤1)和使用轮廓似然进行不确定性分析(步骤2)。轮廓概率主要是通过重复优化来计算的,但是这个过程需要大量的计算。我们修改了用于优化的耦合的ODE-PDE系统,以便它们沿着单独的轮廓进化。为了评估和改进所开发的优化和不确定性分析方法,我们将把它们与我们在其他项目中使用的最新算法(如IPOT、NLPQLP和MATLAB例程fmincon)进行比较。我们将使用这些方法来研究斑马鱼的侧线形成。这一过程被描述为一个高度非线性的反应-扩散-平流耦合方程组,现有的优化方法存在严重的收敛问题。因此,这个例子非常适合于评估已开发的方法。除了纯粹的方法开发,这个项目可以为侧线形成过程中复杂神经元结构的发展提供新的见解。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Continuous analogue to iterative optimization for PDE-constrained inverse problems
连续模拟偏微分方程约束反问题的迭代优化
- DOI:10.1080/17415977.2018.1494167
- 发表时间:2018
- 期刊:
- 影响因子:1.3
- 作者:R. Boiger;A. Fiedler;J. Hasenauer;B. Kaltenbacher
- 通讯作者:B. Kaltenbacher
AMICI: high-performance sensitivity analysis for large ordinary differential equation models.
- DOI:10.1093/bioinformatics/btab227
- 发表时间:2021-10-25
- 期刊:
- 影响因子:0
- 作者:Fröhlich F;Weindl D;Schälte Y;Pathirana D;Paszkowski Ł;Lines GT;Stapor P;Hasenauer J
- 通讯作者:Hasenauer J
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr.-Ing. Jan Hasenauer其他文献
Professor Dr.-Ing. Jan Hasenauer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr.-Ing. Jan Hasenauer', 18)}}的其他基金
MEmilio - Software tools for the modular spatio-temporal modeling and simulation of infectious disease dynamics
MEmilio - 用于传染病动力学模块化时空建模和模拟的软件工具
- 批准号:
528702961 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
AMICI - Scalable numerical simulation and sensitivity analysis of dynamical systems
AMICI - 动力系统的可扩展数值模拟和灵敏度分析
- 批准号:
443187771 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Incentive and governance schenism study of corporate green washing behavior in China: Based on an integiated view of econfiguration of environmental authority and decoupling logic
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
- 批准号:W2433169
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
含Re、Ru先进镍基单晶高温合金中TCP相成核—生长机理的原位动态研究
- 批准号:52301178
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
NbZrTi基多主元合金中化学不均匀性对辐照行为的影响研究
- 批准号:12305290
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
眼表菌群影响糖尿病患者干眼发生的人群流行病学研究
- 批准号:82371110
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
镍基UNS N10003合金辐照位错环演化机制及其对力学性能的影响研究
- 批准号:12375280
- 批准年份:2023
- 资助金额:53.00 万元
- 项目类别:面上项目
CuAgSe基热电材料的结构特性与构效关系研究
- 批准号:22375214
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
A study on prototype flexible multifunctional graphene foam-based sensing grid (柔性多功能石墨烯泡沫传感网格原型研究)
- 批准号:
- 批准年份:2020
- 资助金额:20 万元
- 项目类别:
基于大数据定量研究城市化对中国季节性流感传播的影响及其机理
- 批准号:82003509
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Parameter Estimation for Non-Gaussian Model-Based Clustering with High-Dimensional Data
基于非高斯模型的高维数据聚类参数估计
- 批准号:
RGPIN-2017-05258 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
System optimization of volcanic glass powder-based geopolymer by parameter design of dynamic characteristics
通过动态特性参数设计对火山玻璃粉基地聚物进行系统优化
- 批准号:
22H01566 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Improvement of dust parameterization with data-assimilation-based parameter estimation
通过基于数据同化的参数估计改进灰尘参数化
- 批准号:
22K21337 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Research Activity Start-up
Parameter Estimation for Non-Gaussian Model-Based Clustering with High-Dimensional Data
基于非高斯模型的高维数据聚类参数估计
- 批准号:
RGPIN-2017-05258 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Distributed and lumped parameter chemical process systems energy based control
分布式和集中参数化学过程系统基于能量的控制
- 批准号:
RGPIN-2016-06670 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Deep learning-based parameter estimation of high spatial resolution mathematical models for the spread and control of COVID-19 in Germany
基于深度学习的高空间分辨率数学模型参数估计,用于德国 COVID-19 的传播和控制
- 批准号:
492349907 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Research Grants
Repro Sampling Method: A Transformative Artificial-Sample-Based Inferential Framework with Applications to Discrete Parameter, High-Dimensional Data, and Rare Events Inferences
再现采样方法:一种基于人工样本的变革性推理框架,应用于离散参数、高维数据和稀有事件推理
- 批准号:
2015373 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Standard Grant
Distributed and lumped parameter chemical process systems energy based control
分布式和集中参数化学过程系统基于能量的控制
- 批准号:
RGPIN-2016-06670 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Parameter Estimation for Non-Gaussian Model-Based Clustering with High-Dimensional Data
基于非高斯模型的高维数据聚类参数估计
- 批准号:
RGPIN-2017-05258 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Development of Molecular Structure Search Method and Automated Parameter Construction Scheme Based on Machine Learning
基于机器学习的分子结构搜索方法和自动参数构建方案的开发
- 批准号:
20K22539 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Research Activity Start-up