AMICI - Scalable numerical simulation and sensitivity analysis of dynamical systems

AMICI - 动力系统的可扩展数值模拟和灵敏度分析

基本信息

项目摘要

Ordinary differential equation (ODE) and differential algebraic equation (DAE) models are important tools in life sciences, engineering and many other research fields. They allow for the integrative analysis of heterogeneous data to further the understanding of dynamical systems. However, the simulation and parameterization of ODE and DAE models requires tailored and easy-to-use tools. To support parameterization of models of ever increasing size, scalability and performance are essential requirements. To this end, we developed the research software AMICI (Advanced Multi-language Interface to CVODES and IDAS) which allows for the efficient and scalable simulation of such models. AMICI builds upon the well-established SUNDIALS solver C library (Hindmarsh et al., 2005), to which it provides an easy-to-use high-level interface (Matlab and Python), and a wide array of additional features relevant to systems biologists as well as researchers of related fields. AMICI is already used in at least 15 research groups and one company.The aim of this project is to make the research software AMICI available for reuse and possible further development beyond its original context, and to establish a quality assurance through a professional community. To achieve this, we will professionalize the software development. We will harmonize the Python, Matlab and C++ interfaces, and improve usability, accessibility and overall quality of the code base. Furthermore, we will increase the versatility of AMICI by extending the support of community standards and implementing general-purpose input formats. To support user-centered development, we will build an active community of users and developers by offering user trainings and developer workshops.To evaluate and improve AMICI, we will use it to study a comprehensive set of published benchmarks. This includes a high-dimensional model of cancer signalling developed in our lab. As AMICI allows to tackle forward and inverse problems for large-scale biochemical processes, this project will contribute -- beyond the pure software and method development -- to novel insights into cellular signal processing and potentially also processes studied in other research fields.
常微分方程(ODE)和微分代数方程(DAE)模型是生命科学、工程和其他许多研究领域的重要工具。它们允许对异构数据进行综合分析,以进一步理解动力系统。但是,ODE和DAE模型的模拟和参数化需要量身定制且易于使用的工具。为了支持不断增长的模型的参数化,可扩展性和性能是必不可少的要求。为此,我们开发了研究软件AMICI(CVODES和IDAS的高级多语言接口),它允许对这些模型进行高效和可扩展的模拟。AMICI建立在完善的SUNDIALS求解器C库(Hindmarsh等人,2005),它提供了一个易于使用的高级接口(Matlab和Python),以及与系统生物学家以及相关领域研究人员相关的各种附加功能。AMICI已经在至少15个研究小组和一家公司使用,该项目的目的是使研究软件AMICI可供重新使用,并可能在其原始环境之外进一步开发,并通过专业社区建立质量保证。为了实现这一目标,我们将使软件开发专业化。我们将协调Python,Matlab和C++接口,并提高代码库的可用性,可访问性和整体质量。此外,我们将通过扩展对社区标准的支持和实现通用输入格式来增加AMICI的多功能性。为了支持以用户为中心的开发,我们将通过提供用户培训和开发人员研讨会来建立一个活跃的用户和开发人员社区。为了评估和改进AMICI,我们将使用它来研究一套全面的已发布基准。这包括我们实验室开发的癌症信号传导的高维模型。由于AMICI允许解决大规模生物化学过程的正向和反向问题,该项目将有助于-超越纯软件和方法开发-对细胞信号处理的新见解,并可能在其他研究领域研究过程。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Jan Hasenauer其他文献

Professor Dr.-Ing. Jan Hasenauer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Jan Hasenauer', 18)}}的其他基金

Simulation-based Parameter Optimisation and Uncertainty Analysis Methods for Reaction-Diffusion-Advection Equations
基于仿真的反应扩散平流方程参数优化和不确定性分析方法
  • 批准号:
    311889786
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grants
MEmilio - Software tools for the modular spatio-temporal modeling and simulation of infectious disease dynamics
MEmilio - 用于传染病动力学模块化时空建模和模拟的软件工具
  • 批准号:
    528702961
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队

相似海外基金

Scalable indoor power harvesters using halide perovskites
使用卤化物钙钛矿的可扩展室内能量收集器
  • 批准号:
    MR/Y011686/1
  • 财政年份:
    2025
  • 资助金额:
    --
  • 项目类别:
    Fellowship
DREAM Sentinels: Multiplexable and programmable cell-free ADAR-mediated RNA sensing platform (cfRADAR) for quick and scalable response to emergent viral threats
DREAM Sentinels:可复用且可编程的无细胞 ADAR 介导的 RNA 传感平台 (cfRADAR),可快速、可扩展地响应突发病毒威胁
  • 批准号:
    2319913
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Nanomanufacturing of Perovskite-Analogue Nanocrystals via Continuous Flow Reactors
合作研究:通过连续流反应器进行钙钛矿类似物纳米晶体的可扩展纳米制造
  • 批准号:
    2315997
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
RestoreDNA: Development of scalable eDNA-based solutions for biodiversity regulators and nature-related disclosure
RestoreDNA:为生物多样性监管机构和自然相关披露开发可扩展的基于 eDNA 的解决方案
  • 批准号:
    10086990
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
Scalable and Automated Tuning of Spin-based Quantum Computer Architectures
基于自旋的量子计算机架构的可扩展和自动调整
  • 批准号:
    2887634
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Studentship
FAST CAR-T: Faster, Adaptive and Scalable Technologies For CAR-T Manufacture
FAST CAR-T:更快、自适应和可扩展的 CAR-T 制造技术
  • 批准号:
    EP/Z532770/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
CAREER: Scalable Physics-Inspired Ising Computing for Combinatorial Optimizations
职业:用于组合优化的可扩展物理启发伊辛计算
  • 批准号:
    2340453
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
SHF: Small: QED - A New Approach to Scalable Verification of Hardware Memory Consistency
SHF:小型:QED - 硬件内存一致性可扩展验证的新方法
  • 批准号:
    2332891
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
SBIR Phase I: Scalable Magnetically-Geared Modular Space Manipulator for In-space Manufacturing and Active Debris Remediation Missions
SBIR 第一阶段:用于太空制造和主动碎片修复任务的可扩展磁力齿轮模块化空间操纵器
  • 批准号:
    2335583
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了