種々の多重ゼータ値の統一的および相互発展的な研究

各种多 zeta 值的统一和相互发展的研究

基本信息

  • 批准号:
    20K14294
  • 负责人:
  • 金额:
    $ 2.66万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
  • 财政年份:
    2020
  • 资助国家:
    日本
  • 起止时间:
    2020-04-01 至 2024-03-31
  • 项目状态:
    已结题

项目摘要

Kaneko-Zagier予想に関連して昨年度取り掛かった代数的数の有限類似の理論研究を深め,Julian Rosen氏,竹山美宏氏(筑波大),山本修司氏(慶応大)との共同研究において,Q上のガロア拡大体における素数pの分解法則を線形漸化式を満たす数列のmod pでの値で特徴づけられることを示した.この結果は論文にまとめ,投稿中である.レベルNの多重ゼータ値の研究では,昨年度進めた基礎理論の研究を応用し,レベルNの2重Eisenstein級数のFourier展開とGoncharov余積との対応を明らかにし,そこから自然に生じる正規化2重Eisenstein級数で生成される空間の次元などの数値計算を行った.Broadhurst-Kreimer予想の高レベル化を見出す際に役に立つと思われる.得られた成果は第5回青葉山ゼータ研究集会などで発表した.また,Eisenstein級数の正規化反復Mellin積分値である多重モジュラー値を多重ゼータ値およびモジュラー形式のL関数の特殊値で表す明示公式の研究も進めた.数値実験の末,特殊な場合の2重モジュラー値について,広瀬稔氏(名大)とともに明示的な予想式を発見した.
Kaneko-Zagier, Julian Rosen, Takeyama Mihiro (Tsukuba), Yamamoto Shuji (Kiyoshi), and their joint research on the finite similarity of the numbers of the algebra of the last year's selection of the algebra, have made a deep theoretical study of the linear evolution of the prime p decomposition rule on Q. The results of this paper are. The study of multiple Eisenstein series of N has been carried out in the past year, and the basic theory of N has been studied. The Fourier expansion and Goncharov coproduct of N's double Eisenstein series have been used in the calculation of spatial dimension.Broadhurst-Kreimer expects the high degree of transformation to occur in the calculation of spatial dimension. The fifth chapter of the research conference was held in Beijing. A study of the normalized repeated Mellin integral values of Eisenstein series and the special values of L relations in the form of multiple equations. The number of special occasions, the number of special occasions.

项目成果

期刊论文数量(19)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
多重ゼータの計算入門
多 zeta 计算简介
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Beata Benyi;Toshiki Matsusaka;MATSUMOTO Yuya;Hideya Watanabe;Naoki Fujita;Charlotte Chan and Masao Oi;田坂浩二
  • 通讯作者:
    田坂浩二
Finite and symmetric colored multiple zeta values and multiple harmonic q-series at roots of unity
单位根处的有限且对称的彩色多 zeta 值和多调和 q 级数
  • DOI:
    10.1007/s00029-021-00636-3
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Kato;Hideya Watanabe;Tasaka Koji
  • 通讯作者:
    Tasaka Koji
田坂浩二のホームページ
田坂浩二的主页
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Finite and symmetric Mordell–Tornheim multiple zeta values
  • DOI:
    10.2969/jmsj/84348434
  • 发表时间:
    2020-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Henrik Bachmann;Y. Takeyama;K. Tasaka
  • 通讯作者:
    Henrik Bachmann;Y. Takeyama;K. Tasaka
Spherical designs and modular forms of the D4-lattice
D4 晶格的球形设计和模块化形式
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hoshi Yuichiro;Minamide Arata;Mochizuki Shinichi;Naoki Fujita;大下達也;Matsumoto Yuya;榎園 誠;Ryo Kanda;Koji Tasaka
  • 通讯作者:
    Koji Tasaka
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

田坂 浩二其他文献

A Study on Multiple Zeta Values Related to Periods of Elliptic Modular Forms
与椭圆模形式周期相关的多重Zeta值研究
  • DOI:
    10.15017/1441048
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    田坂 浩二;K. Tasaka;コウジ タサカ
  • 通讯作者:
    コウジ タサカ

田坂 浩二的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('田坂 浩二', 18)}}的其他基金

The dawn of modular phenomena for higher level multiple zeta values with a new development on multiple Eisenstein series
随着多个爱森斯坦级数的新发展,更高水平的多个 zeta 值的模块化现象的曙光
  • 批准号:
    23K03034
  • 财政年份:
    2023
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
モジュラー形式と関連する様々な多重ゼータ関数の代数的、解析的な研究
与模形式相关的各种多重 zeta 函数的代数和分析研究
  • 批准号:
    15J01659
  • 财政年份:
    2015
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
多重ゼータ値の関係式および関連するモジュラー形式の研究
多zeta值关系及相关模形式研究
  • 批准号:
    12J01440
  • 财政年份:
    2012
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows

相似海外基金

直交型モジュラー形式の幾何
正交模数几何
  • 批准号:
    23K20784
  • 财政年份:
    2024
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
量子モジュラー形式の深化と展開
量子模形式主义的深化和扩展
  • 批准号:
    23K22388
  • 财政年份:
    2024
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
量子モジュラー形式の基礎的研究
量子模形式的基础研究
  • 批准号:
    23KJ1675
  • 财政年份:
    2023
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
共形場理論におけるモジュラー形式の数理と宇宙定数問題への新たなアプローチ
共形场论中模形式和宇宙常数问题的数学新方法
  • 批准号:
    22K03628
  • 财政年份:
    2022
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
モジュラー形式の正規化ノルムおよび関連する整数論
模形式归一化范数及相关数论
  • 批准号:
    22K03230
  • 财政年份:
    2022
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
線型微分方程式とモジュラー形式
线性微分方程和模形式
  • 批准号:
    22K03278
  • 财政年份:
    2022
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
多変数モジュラー形式の合同、p進的性質の研究
多元模形式的同余性和p进性质研究
  • 批准号:
    22K03259
  • 财政年份:
    2022
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
直交型モジュラー形式の幾何
正交模数几何
  • 批准号:
    21H00971
  • 财政年份:
    2021
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
非正則モジュラー形式の視点を用いた実二次体の数論
使用不规则模形式的视角的实二次域数论
  • 批准号:
    20K14292
  • 财政年份:
    2020
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Fuchs群上の弱正則モジュラー形式の研究
Fuchs群弱全纯模形式的研究
  • 批准号:
    19J20176
  • 财政年份:
    2019
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了