Light propagation in locally symmetric arrays of waveguides

局部对称波导阵列中的光传播

基本信息

项目摘要

In a close collaboration of theory and experiment this project will address a novel class of materials which are characterized by the fact that they consist of a combination of components exhibiting local symmetries. These could be either discrete reflection or translation symmetries. As an experimental platform we employ arrays of evanescently coupled waveguides, which exhibit a high degree of flexibility in realizing various different structural parameters and consequently a plethora of local symmetries. The main objective of this project is the systematic exploration of the wave mechanical properties of locally symmetric materials thereby aiming at a deep understanding of the corresponding light wave propagation mechanisms in the array of waveguides. Due to the proven impact of local symmetries and the multitude of possibilities for combining them a classification of the characteristics of the wave propagation is of utmost importance. By developing the theoretical framework of discrete locally symmetric photonicstructures we will derive invariant non-local currents which will be observed experimentally. A systematic mode expansion and classification relying on the local symmetry induced invariants represents a cornerstone for the exploration for all resulting phenomena. The latter include novel control of wave localization due to the presence of local symmetries and the design of perfectly transmitting resonances in completely locally symmetric arrays which will be explored both theoretically and experimentally. Although our research is of deeply fundamental character, ie. we elaborate theoretically and experimentally on a new class of material with unique characteristics in terms of wave dynamics, it eventually will have significant application-oriented impact as with local symmetries new and innovative pathways to light manipulation have to be expected.
在理论和实验的密切合作中,这个项目将解决一类新的材料,其特点是它们由表现出局部对称性的成分的组合组成。这些可以是离散反射,也可以是平移对称。作为一个实验平台,我们使用渐变耦合波导阵列,它在实现各种不同的结构参数方面表现出高度的灵活性,从而实现了大量的局部对称性。这个项目的主要目的是系统地探索局部对称材料的波力学性质,从而深入了解相应的光波在波导阵列中的传播机制。由于局部对称性的已证实的影响,以及将它们结合在一起的多种可能性,对波传播特性进行分类是至关重要的。通过发展离散局部对称光子结构的理论框架,我们将得到实验上观察到的不变的非局域电流。依赖于局域对称性诱导不变量的系统模式展开和分类是探索所有由此产生的现象的基石。后者包括基于局域对称性的波局部化的新控制和完全局域对称阵列中理想传输共振的设计,这些都将在理论和实验上进行探索。尽管我们的研究具有深刻的根本性,即。我们从理论和实验上阐述了一类在波动动力学方面具有独特特性的新材料,它最终将产生重大的应用影响,因为具有局部对称性的新的和创新的光操纵途径是必须期待的。

项目成果

期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Transfer efficiency enhancement and eigenstate properties in locally symmetric disordered finite chains
  • DOI:
    10.1016/j.aop.2020.168163
  • 发表时间:
    2018-07
  • 期刊:
  • 影响因子:
    3
  • 作者:
    C. Morfonios;M. Röntgen;F. Diakonos;P. Schmelcher
  • 通讯作者:
    C. Morfonios;M. Röntgen;F. Diakonos;P. Schmelcher
Topological state engineering via supersymmetric transformations
  • DOI:
    10.1038/s42005-020-0316-4
  • 发表时间:
    2020-03-12
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Queralto, Gerard;Kremer, Mark;Szameit, Alexander
  • 通讯作者:
    Szameit, Alexander
Non-adiabatic dynamic-phase-free geometric phase in multiport photonic lattices
  • DOI:
    10.1088/2040-8986/ab68f2
  • 发表时间:
    2020-01
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Kai Wang;A. Pérez-Leija;S. Weimann;A. Szameit
  • 通讯作者:
    Kai Wang;A. Pérez-Leija;S. Weimann;A. Szameit
Non-local currents and the structure of eigenstates in planar discrete systems with local symmetries
具有局域对称性的平面离散系统中的非局域电流和本征态结构
  • DOI:
    10.1016/j.aop.2017.03.011
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    3
  • 作者:
    M. Röntgen;C.V. Morfonios;F.K. Diakonos;P. Schmelcher
  • 通讯作者:
    P. Schmelcher
Flat bands by latent symmetry
  • DOI:
    10.1103/physrevb.104.035105
  • 发表时间:
    2021-07-02
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Morfonios, C., V;Roentgen, M.;Schmelcher, P.
  • 通讯作者:
    Schmelcher, P.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Peter Schmelcher其他文献

Professor Dr. Peter Schmelcher的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Peter Schmelcher', 18)}}的其他基金

Dynamical processes in ultralong-range Rydberg molecules
超长程里德伯分子的动力学过程
  • 批准号:
    315506857
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Symbiotic nonlinear excitations in multi-component Bose-Einstein condensates
多组分玻色-爱因斯坦凝聚中的共生非线性激发
  • 批准号:
    234216431
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Correlated quantum dynamics of finite ultracold bosonic systems in traps
陷阱中有限超冷玻色子系统的相关量子动力学
  • 批准号:
    175351316
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Computational quantum transport in mesoscopic electronic waveguides
介观电子波导中的计算量子传输
  • 批准号:
    30636009
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Classical and quantum dynamics of time-dependent billiards
瞬态台球的经典和量子动力学
  • 批准号:
    48246955
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Ultracold Scattering in Confined Geometries
受限几何形状中的超冷散射
  • 批准号:
    42390521
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Ultracold electronically excited atoms in magnetic microtraps
磁性微阱中的超冷电子激发原子
  • 批准号:
    5437316
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Heliumatome im starken Magnetfeld: Energien und Übergangswahrscheinlichkeiten zur Untersuchung von Sternatmosphären
强磁场中的氦原子:用于研究恒星大气的能量和跃迁概率
  • 批准号:
    5274620
  • 财政年份:
    2000
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Periodische Strukturbestimmung und korrelierte Modellierung von chaotischen dynamischen Systemen
混沌动力系统的周期结构确定和相关建模
  • 批准号:
    5114630
  • 财政年份:
    1998
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

页岩超临界CO2压裂分形破裂机理与分形离散裂隙网络研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
拉压应力状态下含充填断续节理岩体三维裂隙扩展及锚杆加固机理研究
  • 批准号:
    40872203
  • 批准年份:
    2008
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Mechanisms for the propagation of R-loop induced chromosomal fragments in the germline
R环诱导染色体片段在种系中的繁殖机制
  • 批准号:
    2341479
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: GEM: Propagation and Dissipation of Electromagnetic Ion Cyclotron Waves in the Magnetosphere and Ionosphere
合作研究:GEM:磁层和电离层中电磁离子回旋波的传播和耗散
  • 批准号:
    2247396
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
New Challenges in the Study of Propagation of Randomness for Nonlinear Evolution Equations
非线性演化方程随机传播研究的新挑战
  • 批准号:
    2400036
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Dynamic connectivity of river networks as a framework for identifying controls on flux propagation and assessing landscape vulnerability to change
合作研究:河流网络的动态连通性作为识别通量传播控制和评估景观变化脆弱性的框架
  • 批准号:
    2342936
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: Dynamic connectivity of river networks as a framework for identifying controls on flux propagation and assessing landscape vulnerability to change
合作研究:河流网络的动态连通性作为识别通量传播控制和评估景观变化脆弱性的框架
  • 批准号:
    2342937
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Information Propagation over Networks
职业:网络信息传播
  • 批准号:
    2337808
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Understanding Dike Propagation Through Comparison of High-fidelity Coupled Fracture and Fluid Flow Models and Field Observations
通过比较高保真耦合裂缝和流体流动模型以及现场观测来了解堤坝的扩展
  • 批准号:
    2333837
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: GEM: Propagation and Dissipation of Electromagnetic Ion Cyclotron Waves in the Magnetosphere and Ionosphere
合作研究:GEM:磁层和电离层中电磁离子回旋波的传播和耗散
  • 批准号:
    2247398
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Elastic Properties of Confined Fluids and their Role for Wave Propagation in Nanoporous Media
受限流体的弹性特性及其对纳米多孔介质中波传播的作用
  • 批准号:
    2344923
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
LED for faster and better propagation (LED4FaB Roots)
LED 实现更快、更好的传播(LED4FaB Roots)
  • 批准号:
    BB/Z514378/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了