Analysis of Dissipative Dynamical Systems by Geometrical and Variational Methods with Application to Shock-wave Loaded Viscoplastic Structures

通过几何和变分方法分析耗散动力系统并应用于冲击波加载粘塑性结构

基本信息

项目摘要

The mechanics of dissipative dynamical systems deals with non-smooth energy functions, whose analysis leads to nonlinear evolutionary problems that require more sophisticated models with non-smooth calculus of variations. To establish consistent models advanced mathematical tools, such as measure theory, geometric measure theory and also theory of parabolic partial differential equations, are required. For the practical purposes, breakthrough methods however are needed to model such situations in an efficient and lower time-consuming way.The proposal therefore aims to build up theoretical and experimental methods to model dissipative dynamical systems in a consistent geometrical framework, but the numerical approaches are not very far in the background of classical dynamics. The modelling of dissipative systems by using the geometrical methods of classical dynamics will be envisaged. In particular, the symplectic Brezis-Ekeland-Nayroles variational principle and model reduction techniques will be used to solve global evolution problems.The efficiency of the proposed method is then verified with the experimental and numerical simulation of shock-wave loaded copper plates. The gradient damage model will be developed by the enhancement of the Hamiltonian. To take void nucleation and growth into account, the Hamiltonian will be enhanced by introducing a non-local damage term. This enhancement gives rise to an introduction of gradient parameters in terms of a substructure-related intrinsic length-scale and a relationship between non-local and local damage variables. An experimental method to investigate a relationship between in situ heat generation and strain localisation during the viscoplastic deformation under shock-wave loading is envisaged and will be compared with approaches using the Taylor-Quinney coefficient.
耗散动力系统的力学处理非光滑能量函数,其分析导致非线性演化问题,需要更复杂的模型与非光滑变分法。为了建立一致的模型,需要先进的数学工具,如测度理论,几何测度理论和抛物型偏微分方程理论。 然而,从实际应用的角度来看,需要突破性的方法来有效地、低耗时地模拟这种情况,因此,该提案旨在建立在一致的几何框架内模拟耗散动力系统的理论和实验方法,但数值方法在经典动力学的背景下并不是很远。将设想用经典动力学的几何方法来模拟耗散系统。特别地,将辛Brezis-Ekeland-Nayroles变分原理和模型降阶技术用于求解整体演化问题,并通过冲击波加载铜板的实验和数值模拟验证了所提方法的有效性。通过对哈密顿量的增强,建立了梯度损伤模型。为了考虑空穴的成核和生长,引入非局部损伤项来增强哈密顿量。这种增强引起的子结构相关的内在长度尺度和非局部和局部损伤变量之间的关系的梯度参数的引入。一个实验方法来调查原位生热和应变局部化之间的关系,在冲击波载荷下的粘塑性变形的设想,并将使用泰勒-昆尼系数的方法进行比较。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
ON SPACE-TIME FORMULATIONS IN STRUCTURAL MECHANICS USING THE PROPER GENERALIZED DECOMPOSITION
论使用广义分解的结构力学时空公式
Numerical Method for Quasi-static and Dynamic Elastoplastic Problems by Symplectic Brezis-Ekeland-Nayroles Non-incremental Principle
基于辛 Brezis-Ekeland-Nayroles 非增量原理求解准静态和动态弹塑性问题的数值方法
  • DOI:
    10.1007/978-3-030-48834-5_10
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A Oueslati;AD Nguyen;M Stoffel;B Markert;G de Saxcé
  • 通讯作者:
    G de Saxcé
Quasistatic analysis of elastoplastic structures by the proper generalized decomposition in a space-time approach
  • DOI:
    10.1016/j.mechrescom.2020.103500
  • 发表时间:
    2020-03
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    N. Shirafkan;F. Bamer;M. Stoffel;B. Markert
  • 通讯作者:
    N. Shirafkan;F. Bamer;M. Stoffel;B. Markert
A Symplectic Minimum Variational Principle for Dissipative Dynamical Systems
耗散动力系统的辛最小变分原理
  • DOI:
    10.1007/978-3-319-68445-1_42
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Oueslati A;Nguyen A.D;de Saxcé G.
  • 通讯作者:
    de Saxcé G.
A direct method for dissipative dynamical systems by using the symplectic Brezis‐Ekeland‐Nayroles principle
使用辛 BrezisâEkelandâNayroles 原理的耗散动力系统的直接方法
  • DOI:
    10.1002/pamm.201800281
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    AD Nguyen;B Markert
  • 通讯作者:
    B Markert
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Bernd Markert其他文献

Professor Dr.-Ing. Bernd Markert的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Bernd Markert', 18)}}的其他基金

Investigation and calculation of frost heave considering specific boundary conditions of ground freezing
考虑特定地面冻结边界条件的冻胀考察与计算
  • 批准号:
    409760547
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Efficient FEM techniques and fast solvers for coupled solid-fluid problems in geotechnical processes in the framework of the Theory of Porous Media (TPM)
多孔介质理论 (TPM) 框架下岩土工程过程中固液耦合问题的高效 FEM 技术和快速求解器
  • 批准号:
    151738134
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Kontinuumsmechanische Modellierung von Gelenkknorpel unter physio-dynamischer Kontaktbeanspruchung
物理动力学接触应力下关节软骨的连续力学建模
  • 批准号:
    87181715
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Research Grants
CISM-Kurs "Bone Cell and Tissue Mechanics"
CISM课程“骨细胞和组织力学”
  • 批准号:
    5200032
  • 财政年份:
    1999
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Dissipative Vesicle Assemblies Driven by Chemical Fuels
化学燃料驱动的耗散囊泡组件
  • 批准号:
    2304664
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Dissipative Supramolecular Reactor
耗散超分子反应器
  • 批准号:
    22KF0395
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
SBIR Phase II: Mimicking Metatarsophalangeal Joints Using Tailored, Ultra-Dissipative, Liquid-Crystalline Elastomers to Treat Hallux Rigidus
SBIR 第二阶段:使用定制的超耗散液晶弹性体模仿跖趾关节来治疗拇趾僵硬
  • 批准号:
    2242770
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Cooperative Agreement
Large time behavior of solutions to nonlinear hyperbolic and dispersive equations with weakly dissipative structure
弱耗散结构非线性双曲和色散方程解的大时间行为
  • 批准号:
    22KJ2801
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Separation Rates for Dissipative Nonlinear Partial Differential Equations
耗散非线性偏微分方程的分离率
  • 批准号:
    2307097
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Brittle Fracture of Dissipative Solids
耗散固体的脆性断裂
  • 批准号:
    2308169
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Development of analysis method of quantum coherence in dissipative systems and its applications
耗散系统量子相干性分析方法的发展及其应用
  • 批准号:
    23K13071
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Dynamics and Non-Dissipative Approximations of Nonlinear Nonlocal Fluid Equations
非线性非局部流体方程的动力学和非耗散近似
  • 批准号:
    2204614
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Dissipative mode theories and reservoir engineering in quantum nanophotonics
量子纳米光子学中的耗散模式理论和储层工程
  • 批准号:
    RGPIN-2020-04069
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Hamiltonian and Dissipative Structures for Reduced Plasma Kinetic Models
简化等离子体动力学模型的哈密顿结构和耗散结构
  • 批准号:
    2206302
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了