An innovative method for accelerated photo-stability testing of novel thin film semiconductors for solar cell applications
用于太阳能电池应用的新型薄膜半导体加速光稳定性测试的创新方法
基本信息
- 批准号:317277494
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2016
- 资助国家:德国
- 起止时间:2015-12-31 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Degradation mechanisms in optoelectronics such as solar cells occur either due to outer circumstances, e. g. water diffusion into the device over time, or due to intrinsic photo-degradation of the materials such as the absorber layer or electrodes. This intrinsic photo-degradation, due to illumination in the absence of oxygen and water, cannot be suppressed by smart device architectures or advanced packaging strategies. Measuring and successive understanding of the intrinsic degradation processes is, accordingly, a key for further increasing lifetime and reliability of solar systems.Within this project, we want to establish a novel method allowing the accelerated assessment of the photo-stability of optoelectronic materials and in particular of thin film semiconductors for solar applications. Our approach targets to speed up the photo-degradation time by a factor of several hundreds by using concentrated light, since current standard tests last several months. The novelty of the concept is to assess the degradation kinetics under concentrated illumination and well controlled temperature. In doing so, deep insight is gained into the various degradation mechanisms (under low illumination) of the optoelectronic materials or devices. The main technical challenge is to maintain precise control on the temperature for a wide range of illumination intensities. Accordingly, we will be able to separate temperature induced degradation from photo-induced degradation.To the best of our knowledge we are not aware of investigations trying to separate temperature induced degradation processes from photo-induced degradation of optoelectronic materials and use this insight into the processes to establish a method allowing to predict the maximal inherent lifetime of optoelectronic material in the shortest possible time. The proposed method certainly will have relevance to fields other than optoelectronics, such as optical coatings, however, due the background and experience of the investigator we will concentrate our first studies to semiconductors. Different materials, for example paints, chromophore films, spectral selective coatings or packaging foils, may be tested at a later stage.We will further focus our work on semiconductors with relevance for solar applications and, in particular, on materials related to thin film solar cells. A vast amount of novel promising, high performance thin film semiconductor materials is currently developed. Several hundreds of thousands of organic semiconductors were reported in the recent years, however, due to this huge number and long time periods required for lifetime testing, their inherent stability is largely unknown. A method allowing to investigate the intrinsic photo-stability of novel semiconducting materials in the shortest possible measurement time, days instead of months or years, is required in order to build correlations between the structure of the semiconductor and its intrinsic stability.
光电子器件(如太阳能电池)中的降解机制要么是由于外部环境(如水随时间扩散到器件中),要么是由于材料(如吸收层或电极)的内在光降解。由于缺乏氧气和水的照明,这种内在的光降解不能通过智能设备架构或先进的封装策略来抑制。因此,测量和连续了解固有的退化过程是进一步提高太阳能系统寿命和可靠性的关键。在这个项目中,我们希望建立一种新的方法,允许加速评估光电子材料的光稳定性,特别是用于太阳能应用的薄膜半导体。由于目前的标准测试持续数月,我们的方法旨在通过使用聚光将光降解时间加快数百倍。该概念的新颖之处在于评估在集中照明和良好控制的温度下的降解动力学。在此过程中,深入了解了光电材料或器件的各种降解机制(在低照度下)。主要的技术挑战是在广泛的照明强度范围内保持对温度的精确控制。因此,我们将能够区分温度诱导降解和光诱导降解。据我们所知,我们还没有意识到试图将温度诱导降解过程与光电材料的光诱导降解分离开来的研究,并利用这一见解建立了一种方法,可以在最短的时间内预测光电材料的最大固有寿命。所提出的方法当然会与光电子学以外的领域相关,例如光学涂层,然而,由于研究者的背景和经验,我们将首先集中研究半导体。不同的材料,例如油漆、发色团膜、光谱选择性涂层或包装箔,可能会在后期进行测试。我们将进一步关注与太阳能应用相关的半导体,特别是与薄膜太阳能电池相关的材料。目前正在开发大量新颖、有前途的高性能薄膜半导体材料。近年来报道了数十万种有机半导体,然而,由于数量庞大且需要长时间进行寿命测试,其固有的稳定性在很大程度上是未知的。为了建立半导体结构与其内在稳定性之间的相关性,需要一种允许在最短的测量时间(几天而不是几个月或几年)内研究新型半导体材料的内在光稳定性的方法。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Efficient Polymer Solar Cells Based on Non-fullerene Acceptors with Potential Device Lifetime Approaching 10 Years
- DOI:10.1016/j.joule.2018.09.001
- 发表时间:2019-01-16
- 期刊:
- 影响因子:39.8
- 作者:Du, Xiaoyan;Heumueller, Thomas;Brabec, Christoph J.
- 通讯作者:Brabec, Christoph J.
A top-down strategy identifying molecular phase stabilizers to overcome microstructure instabilities in organic solar cells
- DOI:10.1039/c8ee03780a
- 发表时间:2019-03
- 期刊:
- 影响因子:32.5
- 作者:Chaohong Zhang;Thomas Heumueller;S. León;W. Gruber;K. Burlafinger;Xiaofeng Tang;J. D. Perea;
- 通讯作者:Chaohong Zhang;Thomas Heumueller;S. León;W. Gruber;K. Burlafinger;Xiaofeng Tang;J. D. Perea;
Infrared Absorption Imaging of Water Ingress Into the Encapsulation of (Opto-)Electronic Devices
- DOI:10.1109/jphotov.2018.2877883
- 发表时间:2019-01
- 期刊:
- 影响因子:3
- 作者:J. Hepp;A. Vetter;S. Langner;M. Woiton;G. Jovicic;K. Burlafinger;J. Hauch;C. Camus;H. Egelhaaf;C. Brabec
- 通讯作者:J. Hepp;A. Vetter;S. Langner;M. Woiton;G. Jovicic;K. Burlafinger;J. Hauch;C. Camus;H. Egelhaaf;C. Brabec
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Christoph J. Brabec其他文献
Professor Dr. Christoph J. Brabec的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Christoph J. Brabec', 18)}}的其他基金
Development of novel organic semiconductors and advanced combinatorial characterization methods for high performance, printable polymer solar cells
开发新型有机半导体和先进的组合表征方法,用于高性能、可印刷聚合物太阳能电池
- 批准号:
322714635 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Research Grants
Development of novel imaging techniques for the identification of loss mechanisms in tandem solar cells
开发用于识别串联太阳能电池损耗机制的新型成像技术
- 批准号:
281813512 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Research Grants
Controlling the electronic interface properties in polymer-fullerene bulk-heterojunction solar cells
控制聚合物富勒烯本体异质结太阳能电池的电子界面特性
- 批准号:
167680821 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Priority Programmes
Near IR sensitization of polymer/fullerene solar cells: controlling the morphology and transport in ternary blends
聚合物/富勒烯太阳能电池的近红外敏化:控制三元共混物的形态和传输
- 批准号:
169971168 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Priority Programmes
Process-structure relationships for solution-processed organic photovoltaics
溶液加工有机光伏电池的工艺结构关系
- 批准号:
449539983 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
Organic Solar Cells for Outer Space with Improved Performance and Radiation Hardness by a High Throughput Artificial Intelligence Guided Approach
通过高通量人工智能引导方法提高性能和辐射硬度的外层空间有机太阳能电池
- 批准号:
464963576 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
Separating microstructure-related from photo-induced degradation mechanisms in NFA based organic solar cells (Project 9)
将基于 NFA 的有机太阳能电池中与微观结构相关的机制与光致降解机制分开(项目 9)
- 批准号:
511600498 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Units
相似国自然基金
基于仿生矿化法构建氢离子捕获的炎症调节性水凝胶微球在卒中治疗中的研究
- 批准号:82372120
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
偏线性分位数样本截取和选择模型的估计与应用—基于非参数筛分法(Sieve Method)
- 批准号:72273091
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
基于非结构化网格Front Tracking方法的复杂流动区域弹性界面液滴动力学研究
- 批准号:52006188
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
新随机占优理论及其在社会福利研究中的应用
- 批准号:71971204
- 批准年份:2019
- 资助金额:48.0 万元
- 项目类别:面上项目
静动态损伤问题的基面力元法及其在再生混凝土材料细观损伤分析中的应用
- 批准号:11172015
- 批准年份:2011
- 资助金额:58.0 万元
- 项目类别:面上项目
磁力显微镜对纳米尺度磁畴结构的定量研究
- 批准号:51071088
- 批准年份:2010
- 资助金额:38.0 万元
- 项目类别:面上项目
典型团簇结构模式随尺度变化的理论计算研究
- 批准号:21043001
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
TB方法在有机和生物大分子体系计算研究中的应用
- 批准号:20773047
- 批准年份:2007
- 资助金额:26.0 万元
- 项目类别:面上项目
Fisher矢量机
- 批准号:60602064
- 批准年份:2006
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
基于全局变量的新型电磁场数值计算方法-有限公式方法及其应用研究
- 批准号:50577016
- 批准年份:2005
- 资助金额:9.0 万元
- 项目类别:面上项目
相似海外基金
Development of novel accelerated maturation method of hiPSC-derived cardiomyocytes: research for heart regenerative medicine
hiPSC 来源的心肌细胞的新型加速成熟方法的开发:心脏再生医学研究
- 批准号:
23K08265 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
AI-accelerated optical simulation for fast timing nuclear imaging
用于快速核成像的人工智能加速光学模拟
- 批准号:
10744626 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Accelerated Resolution Therapy for Early Maladaptive Grief: A Clinical Trial
早期适应不良悲伤的加速解决疗法:临床试验
- 批准号:
10578937 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Integrating Accelerated Droplet Chemistry with LC-MS for High Throughput Quantitative Analysis
将加速液滴化学与 LC-MS 相结合进行高通量定量分析
- 批准号:
10607125 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Simplified Analysis Method of Shear-jointed Girders for Accelerated Bridge Replacement
加速桥梁更换剪力连接梁的简化分析方法
- 批准号:
564912-2021 - 财政年份:2021
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
Using Artificial Intelligence to Identify Accelerated Brain Aging in World Trade Center Responders
使用人工智能识别世贸中心急救人员的大脑加速老化情况
- 批准号:
10474467 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Using Artificial Intelligence to Identify Accelerated Brain Aging in World Trade Center Responders
使用人工智能识别世贸中心急救人员的大脑加速老化情况
- 批准号:
10315319 - 财政年份:2021
- 资助金额:
-- - 项目类别:
A Randomized Controlled Trial of Sequential Bilateral Accelerated Theta Burst Stimulation in Adolescents with Suicidal Ideation Associated with Major Depressive Disorder
对患有重度抑郁症相关自杀意念的青少年进行序贯双侧加速 Theta 爆发刺激的随机对照试验
- 批准号:
10259880 - 财政年份:2020
- 资助金额:
-- - 项目类别:
A Randomized Controlled Trial of Sequential Bilateral Accelerated Theta Burst Stimulation in Adolescents with Suicidal Ideation Associated with Major Depressive Disorder
对患有重度抑郁症相关自杀意念的青少年进行序贯双侧加速 Theta 爆发刺激的随机对照试验
- 批准号:
10096197 - 财政年份:2020
- 资助金额:
-- - 项目类别:
A Randomized Controlled Trial of Sequential Bilateral Accelerated Theta Burst Stimulation in Adolescents with Suicidal Ideation Associated with Major Depressive Disorder
对患有重度抑郁症相关自杀意念的青少年进行序贯双侧加速 Theta 爆发刺激的随机对照试验
- 批准号:
10463815 - 财政年份:2020
- 资助金额:
-- - 项目类别: