Fluorescent Hemolysis Detection (FHD): Vaidation of the in-vitro test method

荧光溶血检测(FHD):体外测试方法的验证

基本信息

项目摘要

Cardiac assist devices (e.g. blood pumps or artificial heart valves) are frequently used for the treatment of cardiovascular diseases as an alternative for transplantations. Despite the improvement of the aforementioned systems, severe complications like hemolysis (red blood cell destruction), thrombosis or bleeding events still occur frequently and therefore bear high risks for patients and cause high therapy and follow-up costs at the same time.Hemolysis describes red blood cells’ (RBCs) membrane destruction, which leads to the loss of hemoglobin. Hemoglobin is responsible for the oxygen transport and is thus crucial for the oxygen supply of the whole body. Currently, neither in-silico nor in-vitro techniques allow for evaluating the hemolysis origin in cardiac assist devices. Hence, major hemolysis hotspots are detected late during device development or in the worst case during patient treatment. A new approach for overcoming the deficit of spatially resolved hemolysis detection was offered by the Fluorescent Hemolysis Detection (FHD) method.The FHD method is based on ghostcells (GCs), which are RBCs lacking hemoglobin due to controlled lyses of the cells. During lyses, GCs are loaded with a marker and added into an artificial plasma, containing an indicator sensitive to the marker. In case of hemolysis, the marker from the GCs’ interior is released into the artificial plasma where it reacts with the fluorescence indicator, highlighting the origin of hemolysis.During the previous DFG-funded project, main aspects of the FHD method were addressed: large volume production of loaded GCs, rheology adaption of GCs to RBCs’ rheology, deformation ability of loaded GCs compared with RBCs, and membrane impermeability of GCs with respect to the marker. It was shown that loaded GCs properties are similar to RBCs in terms of rheology and impermeability.Within the follow-up application, the FHD method will be validated as a spatially and temporally resolved method for the evaluation of hemolysis in blood conducting devices. Up to now, only chemical hemolysis was detected by the FHD method. At the end of this project, mechanical hemolysis will be detectable in a centrifugal blood pump, combined with PIV measurements and spatially resolved hemolysis detection. Therefore, the impact of PIV particles as well as the resolution limits with regard to time and place will be evaluated. Additionally, the GC hemolysis threshold will be compared to RBCs to establish a quantitative hemolysis analysis. The results of this work will allow for a-priori evaluation of medical devices in terms of hemolysis, as results will not only improve in-vitro test methods but also influence CFD simulations. Simulation models can incorporate new insights into medical devices hemolysis and will improve their hemolysis prediction significantly. In the long run, results of this method will improve blood conducting devices and therewith patient care and safety.
心脏辅助装置(如血泵或人工心脏瓣膜)经常用于治疗心血管疾病,作为移植的替代方案。尽管上述系统得到了完善,但溶血(红细胞破坏)、血栓形成或出血事件等严重并发症仍然频繁发生,给患者带来了较高的风险,同时也造成了较高的治疗和随访费用。溶血是指红细胞(rbc)膜的破坏,导致血红蛋白的损失。血红蛋白负责氧气运输,因此对整个身体的氧气供应至关重要。目前,无论是计算机技术还是体外技术都无法评估心脏辅助装置中溶血的起源。因此,主要的溶血热点是在设备开发的后期发现的,最坏的情况是在患者治疗期间发现的。荧光溶血检测(FHD)方法为克服溶血空间分辨检测的缺陷提供了一种新的方法。FHD方法是基于鬼细胞(GCs),这是一种红细胞缺乏血红蛋白,由于控制细胞的裂解。在裂解过程中,gc被装载标记物并加入到人工血浆中,其中含有对该标记物敏感的指示剂。在溶血的情况下,来自gc内部的标记物被释放到人工血浆中,在那里它与荧光指示剂发生反应,突出溶血的起源。在之前dfg资助的项目中,FHD方法的主要方面得到了解决:负载gc的大量生产,gc对红细胞流变学的流变适应性,负载gc与红细胞相比的变形能力,以及gc相对于标记物的膜不渗透性。结果表明,负载GCs在流变性和抗渗性方面与红细胞相似。在后续应用中,FHD方法将被验证为一种空间和时间分辨的方法,用于评估血液传导装置中的溶血。目前,FHD法仅检测化学溶血。在本项目结束时,将结合PIV测量和空间分辨溶血检测,在离心血泵中检测机械溶血。因此,将评估PIV粒子的影响以及在时间和地点上的分辨率限制。此外,将GC溶血阈值与红细胞进行比较,以建立定量溶血分析。这项工作的结果将允许在溶血方面对医疗设备进行先验评估,因为结果不仅将改进体外测试方法,而且还将影响CFD模拟。仿真模型可以将新的见解纳入医疗设备溶血,并将大大提高溶血预测。从长远来看,这种方法的结果将改善血液传导装置,从而改善患者的护理和安全。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Ulrich Steinseifer其他文献

Professor Dr.-Ing. Ulrich Steinseifer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Ulrich Steinseifer', 18)}}的其他基金

Development and validation of a numerical model for the investigation of transcatheter aortic valve implantations
用于研究经导管主动脉瓣植入的数值模型的开发和验证
  • 批准号:
    237767598
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Modeling and validation of gas exchange and multiphase fluid dynamics in hollow fiber oxygenators.
中空纤维充氧器中气体交换和多相流体动力学的建模和验证。
  • 批准号:
    261129001
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Grants
3DLung - Implantable Artifical Lung Based on Three-Dimensional Membranes
3DLung - 基于三维膜的植入式人工肺
  • 批准号:
    347368182
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes

相似海外基金

Mechanisms of platelet stimulation in hemolysis
溶血中血小板刺激的机制
  • 批准号:
    10571830
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Mechanisms of platelet stimulation in hemolysis
溶血中血小板刺激的机制
  • 批准号:
    10370496
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Bioengineering a novel therapeutic protein complex to minimize the effects of medical device induced hemolysis
生物工程新型治疗性蛋白质复合物可最大程度地减少医疗设备引起的溶血的影响
  • 批准号:
    10542403
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Validation and drug development for anti-cancer therapy targeting hemolysis-hemopexin related axis
针对溶血-血红素相关轴的抗癌治疗的验证和药物开发
  • 批准号:
    22K07253
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Bioengineering a novel therapeutic protein complex to minimize the effects of medical device induced hemolysis
生物工程新型治疗性蛋白质复合物可最大程度地减少医疗设备引起的溶血的影响
  • 批准号:
    10380296
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Macrophage and Monocyte Metabolic Adaptation in Hemolysis and Sickle Cell Disease
溶血和镰状细胞病中的巨噬细胞和单核细胞代谢适应
  • 批准号:
    10490969
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Hemolysis and the Hematopoietic Niche
溶血和造血生态位
  • 批准号:
    10456798
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Hemolysis and free heme signaling in pulmonary hypertension
肺动脉高压中的溶血和游离血红素信号传导
  • 批准号:
    10402254
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Elucidation of the appropriate degree of occlusion of roller pumps and development of an adjustment system to prevent hemolysis during in cardiopulmonary bypass.
阐明滚子泵的适当闭塞程度并开发调节系统以防止体外循环期间的溶血。
  • 批准号:
    20K20248
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Complications of Hemolysis and Transfusion Therapy
溶血和输血治疗的并发症
  • 批准号:
    10220124
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了