Knowledge-Aware Learning Analytics Infrastructure to Support Smart Education and Learning
支持智慧教育和学习的知识感知学习分析基础设施
基本信息
- 批准号:20H01722
- 负责人:
- 金额:$ 11.48万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2020
- 资助国家:日本
- 起止时间:2020-04-01 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Inital development in the previous year lead to the implementation and evaluation of several research sub-topics, and results were also disseminated in journals and international conferences, inlcuding a new knowledge tracing model based on the latest transformer deep learning model. The later is based on a BERT style transformer and outperformed the state-of-the-art deep knowledge tracing models at the time of presentation. Other research was also conducted to examine the explainability of more classic knowledge tracing models, such as: BKT by analyzing the internal parameters of the model and how they relate with the types of quizzes being recommended. An explainable group formation method was also proposed by applying a genetic algorithm to the creation of groups for study tasks based on the students current knowledge state as estimated by the knowledge map platform. A reading recommendation system was also designed based on the knowledge map platform preliminary evaluation was conducted in a school. The design of the system was presented as a poster paper at the leading conference on learning analytics, LAK.
去年的初步开发导致了几个研究子课题的实施和评估,结果也在期刊和国际会议上传播,包括基于最新Transformer深度学习模型的新知识追踪模型。后者基于BERT风格的Transformer,在演示时优于最先进的深度知识跟踪模型。其他研究也进行了检查更经典的知识追踪模型的可解释性,如:BKT通过分析模型的内部参数,以及它们如何与被推荐的测验类型相关。一个可解释的组形成方法也提出了通过应用遗传算法创建组的学习任务的基础上,学生当前的知识状态估计的知识地图平台。设计了基于知识地图平台的阅读推荐系统,并在某学校进行了初步评价。该系统的设计在学习分析的领先会议LAK上作为海报论文提出。
项目成果
期刊论文数量(75)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A framework to foster analysis skill for self-directed activities in data-rich environment
培养数据丰富环境中自主活动分析技能的框架
- DOI:10.1186/s41039-021-00170-y
- 发表时间:2021
- 期刊:
- 影响因子:3.2
- 作者:石黒直隆;松村秀一;寺井洋平;本郷一美;Yuanyuan YANG; Rwitajit MAJUMDAR; Huiyong LI; Gokhan Akapanar; Brendan FLANAGAN; Hiroaki OGATA
- 通讯作者:Yuanyuan YANG; Rwitajit MAJUMDAR; Huiyong LI; Gokhan Akapanar; Brendan FLANAGAN; Hiroaki OGATA
BEKT: Deep Knowledge Tracing with Bidirectional Encoder Representations from Transformers
BEKT:使用 Transformer 的双向编码器表示进行深度知识追踪
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Zejie Tian;Guangcong Zheng;Brendan Flanagan;Jiazhi Mi;and Hiroaki Ogata
- 通讯作者:and Hiroaki Ogata
Identifying Student Engagement and Performance from Reading Behaviors in Open eBook Assessment
从开放电子书评估中的阅读行为中识别学生的参与度和表现
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Brendan Flanagan;Rwitajit Majumdar;Kensuke Takii;Patrick Ocheja;Mei-Rong Alice Chen and Hiroaki Ogata
- 通讯作者:Mei-Rong Alice Chen and Hiroaki Ogata
How Does The Quality of Students’ Highlights Affect Their Learning Performance in e-Book Reading
学生精彩片段的质量如何影响他们电子书阅读的学习表现
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Albert Yang;Irene Y.L. Chen;Brendan Flanagan and Hiroaki Ogata
- 通讯作者:Brendan Flanagan and Hiroaki Ogata
LA Platform in Junior High School: Trends of Usage and Student Performance
初中 LA 平台:使用趋势和学生表现
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Majumdar Rwitajit;Kuromiya Hiroyuki;Komura Kiriko;Flanagan Brendan;Ogata Hiroaki
- 通讯作者:Ogata Hiroaki
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Flanagan Brendan其他文献
膵β細胞の恒常性維持に重要なCCR4-NOT複合体を介したmRNA分解制御の解析
分析 CCR4-NOT 复合物介导的 mRNA 降解控制,这对于维持胰腺 β 细胞的稳态很重要
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Mori Ryoichi;Tanaka Katsuya;Shimokawa Isao;H. Sukegawa et al.;Flanagan Brendan;栁谷朗子 - 通讯作者:
栁谷朗子
The PROB of graded bialgebras, perverse sheaves on configuration spaces and Hecke algebroids
分级双代数、构形空间上的反常滑轮和 Hecke 代数体的 PROB
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Majumdar Rwitajit;Bakilapadavu Geetha;Rajendran Ramkumar;Sahasrabudhe Sameer;Flanagan Brendan;Chen Mei-Rong Alice;Ogata Hiroaki;Mikhail Kapranov - 通讯作者:
Mikhail Kapranov
Learning Analytics and Evidence-based K12 Education in Japan: Usage of Data-driven Services and Mobile Learning Across Two Years.
日本的学习分析和循证 K12 教育:两年来数据驱动服务和移动学习的使用。
- DOI:
10.1504/ijmlo.2023.10048714 - 发表时间:
2023 - 期刊:
- 影响因子:1.5
- 作者:
Ogata Hiroaki;Majumdar Rwitajit;Flanagan Brendan;Kuromiya Hiroyuki - 通讯作者:
Kuromiya Hiroyuki
Connecting a Lifelong Learning on the Blockchain: Key Factors and Lessons Learned
连接区块链上的终身学习:关键因素和经验教训
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Ocheja Patrick;Flanagan Brendan;Ogata Hiroaki;Ocheja Patrick - 通讯作者:
Ocheja Patrick
カラスにおける集団形成と個体の社会戦略
乌鸦的群体形成和个体社交策略
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Majumdar Rwitajit;Chen Alice;Flanagan Brendan;Ogata Hiroaki;伊澤 栄一 - 通讯作者:
伊澤 栄一
Flanagan Brendan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Flanagan Brendan', 18)}}的其他基金
Extraction and Use of Highly Explainable and Transferable Indicators for AI in Education
高度可解释和可转移的人工智能教育指标的提取和使用
- 批准号:
23K25698 - 财政年份:2024
- 资助金额:
$ 11.48万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Extraction and Use of Highly Explainable and Transferable Indicators for AI in Education
高度可解释和可转移的人工智能教育指标的提取和使用
- 批准号:
23H01001 - 财政年份:2023
- 资助金额:
$ 11.48万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Learning Support by Novel Modality Process Analysis of Educational Big Data
教育大数据新模态过程分析的学习支持
- 批准号:
21K19824 - 财政年份:2021
- 资助金额:
$ 11.48万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
相似海外基金
CAREER: Towards Open World Event Knowledge Extraction with Weak Supervision
职业:在弱监督下实现开放世界事件知识提取
- 批准号:
2238940 - 财政年份:2023
- 资助金额:
$ 11.48万 - 项目类别:
Continuing Grant
Research on clinical knowledge extraction infrastructure using real-world data derived from electronic medical records
使用电子病历中的真实数据提取临床知识基础设施的研究
- 批准号:
23K17001 - 财政年份:2023
- 资助金额:
$ 11.48万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: CISE-MSI: DP: IIS: Event Detection and Knowledge Extraction via Learning and Causality Analysis for Resilience Emergency Response
协作研究:CISE-MSI:DP:IIS:通过学习和因果关系分析进行事件检测和知识提取,以实现弹性应急响应
- 批准号:
2219615 - 财政年份:2023
- 资助金额:
$ 11.48万 - 项目类别:
Standard Grant
Collaborative Research: CISE-MSI: DP: IIS: Event Detection and Knowledge Extraction via Learning and Causality Analysis for Resilience Emergency Response
协作研究:CISE-MSI:DP:IIS:通过学习和因果关系分析进行事件检测和知识提取,以实现弹性应急响应
- 批准号:
2219614 - 财政年份:2023
- 资助金额:
$ 11.48万 - 项目类别:
Standard Grant
CAREER: Knowledge Extraction and Discovery from Massive Text Corpora via Extremely Weak Supervision
职业:通过极弱监督从海量文本语料库中提取和发现知识
- 批准号:
2239440 - 财政年份:2023
- 资助金额:
$ 11.48万 - 项目类别:
Continuing Grant
A new approach for traffic data management and modeling that combines storage efficiency and immediate knowledge extraction
一种结合存储效率和即时知识提取的交通数据管理和建模新方法
- 批准号:
23K17800 - 财政年份:2023
- 资助金额:
$ 11.48万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Accelerating medicine development timelines through new approaches in knowledge extraction from diverse biological data sets
通过从不同生物数据集中提取知识的新方法加快药物开发进程
- 批准号:
MR/W003996/1 - 财政年份:2021
- 资助金额:
$ 11.48万 - 项目类别:
Research Grant
A real-time system for data streaming and knowledge extraction on mobile devices
移动设备上的数据流和知识提取的实时系统
- 批准号:
DDG-2019-05756 - 财政年份:2021
- 资助金额:
$ 11.48万 - 项目类别:
Discovery Development Grant
Revamping Real Estate investments with a Neural Network pipeline for image recognition and knowledge extraction from floor plans and planning applications
使用神经网络管道改造房地产投资,以进行图像识别并从平面图和规划应用程序中提取知识
- 批准号:
10004707 - 财政年份:2021
- 资助金额:
$ 11.48万 - 项目类别:
Collaborative R&D
Knowledge Extraction via Learning Processes and Data Models with Imprecision
通过不精确的学习过程和数据模型提取知识
- 批准号:
RGPIN-2017-06245 - 财政年份:2021
- 资助金额:
$ 11.48万 - 项目类别:
Discovery Grants Program - Individual