Investigation of efficient film cooling configurations in realistically turbulent main flow

研究真实湍流主流中的高效气膜冷却配置

基本信息

项目摘要

The development of future, low emission gas turbine combustors requires efficient cooling concepts, which allow a wide range of options to control the combustion process due to a minimum consumption of cooling air. Applying new cooling configurations like the trench cooling, where the cooling air from the effusion jet is distributed laterally, the resulting film cooling efficiency can be considerably improved by up to one order of magnitude compared to simple effusion cooling. Up to now measurements were conducted at a main flow turbulence intensity of Tu = 1%. When exposing the trench geometry to the higher turbulence level of a real combustion chamber, the cooling efficiency might be reduced due to increased liftoff of the cooling air from the surface and premature mixing with the main flow.The main goal of the proposed research project is to achieve a deeper physical understanding of the detailed flow and heat transfer phenomena that occur in effusion cooling as compared to trench film cooling configurations through experimental and numerical investigations. The focus is on study of cooling films in a main flow of high turbulence characteristic for flows in real gas turbine combustion chambers. The effect of this increased main flow turbulence on the complex unsteady flow, mixing and heat transfer processes, as well as the resulting heat transfer coefficients and film cooling effectiveness will be studied experimentally and numerically.The experimental studies will use optical non-intrusive measurement technology. Besides standard techniques such as LDA and high speed PIV, novel measurement techniques will be optimized and applied. Using a combination of infrared and phosphorescence measurement techniques for measuring temperature boundary conditions, the distribution of the local heat transfer coefficient can be determined. Applying thermographic high speed PIV to the film cooling setup, time resolved simultaneous temperature and velocity distributions in the flow field can be measured. This allows the detailed examination of the complex unsteady flow structures and of the turbulent fluxes. The CFD simulations accompanying the experiment are performed using the commercial CFD code ANSYS Fluent with realizable k-epsilon model. For the detailed numerical studies of the effect of large eddies on the film structure and on the turbulent mixing, large eddy simulations will be performed using the open source CFD code OpenFOAM.
未来低排放气体涡轮机燃烧器的发展需要有效的冷却概念,由于冷却空气的最小消耗,这允许广泛的选择来控制燃烧过程。应用新的冷却配置,如沟槽冷却,其中来自泻流射流的冷却空气横向分布,与简单的泻流冷却相比,所得到的薄膜冷却效率可以显著提高高达一个数量级。到目前为止,测量是在Tu = 1%的主流湍流强度下进行的。当将沟槽几何形状暴露于真实的燃烧室的较高湍流水平时,冷却效率可能会降低,这是由于冷却空气从表面的上升和与主流的过早混合。拟议的研究项目的主要目标是实现更深入的物理理解的详细流动和传热现象发生在泻流冷却相比,沟槽薄膜冷却配置通过实验和数值研究。重点研究了真实的燃气涡轮机燃烧室内高湍流特性主流中的冷却膜。将采用光学非侵入式测量技术,通过实验和数值计算研究这种主流湍流度的增加对复杂的非定常流动、混合和传热过程的影响,以及由此产生的传热系数和气膜冷却效率。除了LDA和高速PIV等标准技术外,还将优化和应用新的测量技术。利用红外和磷光测量技术的组合测量温度边界条件,可以确定局部传热系数的分布。将热像高速PIV技术应用于气膜冷却装置中,可以同时测量流场的时间分辨温度和速度分布。这使得复杂的非定常流动结构和湍流通量的详细检查。使用商业CFD代码ANSYS Fluent和可实现的k-curve模型进行伴随实验的CFD模拟。对于大涡对膜结构和湍流混合的影响的详细数值研究,将使用开源CFD代码OpenFOAM进行大涡模拟。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Michael Pfitzner其他文献

Professor Dr. Michael Pfitzner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Michael Pfitzner', 18)}}的其他基金

Modeling and Identification of Technically Premix Flame Dynamics
技术上预混火焰动力学的建模和识别
  • 批准号:
    393001638
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Flow and heat transfer in complex film cooling configurations for application in future gas turbine combustors
复杂薄膜冷却配置中的流动和传热,适用于未来燃气轮机燃烧室
  • 批准号:
    239213895
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Numerische Simulation des verbrennungsinduzierten Wirbelaufplatzens in Drallröhren
涡流管内燃烧引起涡爆的数值模拟
  • 批准号:
    5439451
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Einfluss von periodisch instationären Zuströminhomogenitäten auf das instationäre Strömungs- und Grenzschichtverhalten von Turbinen- und Verdichtergittern bei hohen Mach-Zahlen
周期性不稳定流入不均匀性对高马赫数下涡轮机和压缩机网格的非稳定流动和边界层行为的影响
  • 批准号:
    5204882
  • 财政年份:
    1999
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

固定参数可解算法在平面图问题的应用以及和整数线性规划的关系
  • 批准号:
    60973026
  • 批准年份:
    2009
  • 资助金额:
    32.0 万元
  • 项目类别:
    面上项目

相似海外基金

Tailoring smart film for energy efficient protected cropping
为节能保护性作物量身定制智能薄膜
  • 批准号:
    LP210200345
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Linkage Projects
A Multiplex Analyzer for Sepsis Management
用于脓毒症管理的多重分析仪
  • 批准号:
    10483277
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Study of molecular interfaces in polymer thin-film composite membranes for the efficient gas separations
用于高效气体分离的聚合物薄膜复合膜分子界面研究
  • 批准号:
    22K04806
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A robust, low-cost platform for EM connectomics
强大、低成本的 EM 连接组学平台
  • 批准号:
    10273540
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Microfabricated all-diamond microelectrode arrays for neurotransmitter sensing and extracellular recording
用于神经递质传感和细胞外记录的微加工全金刚石微电极阵列
  • 批准号:
    10337137
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Microfabricated all-diamond microelectrode arrays for neurotransmitter sensing and extracellular recording
用于神经递质传感和细胞外记录的微加工全金刚石微电极阵列
  • 批准号:
    10563205
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Efficient carrier transport and stable operation of organic thin-film transistors based on molecular layer-controlling technique
基于分子层控制技术的有机薄膜晶体管的高效载流子传输和稳定运行
  • 批准号:
    19H02579
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Bench Scale Studies of Novel In-situ Aquifer Remediation of Recalcitrant Fluorinated Organic Compounds at Superfund Sites
超级基金地点顽固氟化有机化合物新型原位含水层修复的实验室规模研究
  • 批准号:
    9409532
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
Highly efficient for fully printable organic-inorganic hybrid bulk heterojunction thin-film solar cells
高效用于完全可印刷的有机-无机混合体异质结薄膜太阳能电池
  • 批准号:
    17K14924
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Silicon Compatible CaxBa1-xNb2O6 Thin Film for Energy Efficient Optical Transmitters: A Gateway to Next Generation Green Photonics Technology
用于节能光发射器的硅兼容 CaxBa1-xNb2O6 薄膜:通向下一代绿色光子技术的大门
  • 批准号:
    471200-2015
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Postdoctoral Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了