FET: Small: CMOS+X: Integration of CMOS and voltage-controlled magnetic tunnel junctions for probabilistic computing
FET:小型:CMOS X:集成 CMOS 和压控磁隧道结,用于概率计算
基本信息
- 批准号:2322572
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2026-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The fast growth of artificial intelligence applications currently outpaces the advances in their underlying semiconductor-based hardware. As a result, there is an urgent need for improved machine learning (ML) chips, which provide superior energy efficiency, reliability and security compared to existing solutions. At the same time, even with the best available computing hardware today, many important optimization problems cannot be solved using known algorithms in an efficient and scalable manner. Examples are the Boolean satisfiability, traveling salesman, and integer factorization problems, which have important applications ranging from microelectronic chip design to drug discovery, logistics, transportation, and cryptography. This project aims to develop application-specific integrated circuit (ASIC) prototypes that solve these problems using the physics of appropriately designed probabilistic circuits. These ASICs represent a physics-inspired and domain-specific computing architecture, where hardware and software are co-designed to solve a specific problem which cannot be efficiently solved – using finite time and energy resources – on any general-purpose classical computing chip. The project is expected to impact a wide range of artificial intelligence and optimization applications across various industries, while also providing new fundamental insights into the emerging class of probabilistic computing architectures. In addition to its research objectives, a key goal of this project is also workforce development for advanced semiconductor technologies. Research results will also be incorporated into new course materials being developed at Northwestern University.This project will develop integrated circuits where complementary metal-oxide silicon (CMOS) circuits are integrated with voltage-controlled magnetic memory devices, which will serve as ultrafast true random number generators. The chips are aimed for two application areas which will be investigated in this project: (A) Low-power machine learning processors based on probabilistic circuits: Convolutional neural networks require large numbers of transistors and high-power dissipation. The researchers will develop a stochastic computing implementation of neural networks integrated with magnetic memory devices, which simplifies the multiplication and addition operations, resulting in significant reduction of power consumption and chip area. (B) Combinatorial optimization processors based on probabilistic circuits: This project will also develop probabilistic optimization circuits where the optimization problem of interest is mapped onto an appropriately designed network of probabilistic bits on the ASIC. The performance and efficiency of the ASICs for both problems will be compared to existing general-purpose computing hardware.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人工智能应用程序的快速增长目前超过其基于半导体的硬件的进步。结果,与现有解决方案相比,迫切需要改进机器学习(ML)芯片,可提供较高的能源效率,可靠性和安全性。同时,即使今天使用最佳的计算硬件,许多重要的优化问题也无法以有效且可扩展的方式使用已知算法解决。例子是布尔满意度,旅行推销员和整数分解问题,这些问题具有重要的应用,从微电子芯片设计到药物发现,物流,运输和密码学。该项目旨在开发特定于应用的集成电路(ASIC)原型,该原型使用适当设计的有问题的电路的物理学解决这些问题。这些ASIC代表了一个受物理启发和特定领域的计算体系结构,在任何通用的经典计算芯片上都无法使用有限的时间和能源来解决硬件和软件的共同设计。预计该项目将影响各个行业的广泛人工智能和优化应用程序,同时还为新兴概率计算体系结构提供了新的基本见解。除了其研究目标外,该项目的关键目标也是高级半导体技术的劳动力开发。研究结果还将被纳入西北大学开发的新课程材料中。该项目将开发集成的电路,其中完整的金属氧化硅(CMOS)电路与电压控制的磁性内存设备集成在一起,该电路将作为超快的真实随机数生成器。这些芯片针对两个应用程序区域,该应用程序将在该项目中进行研究:(a)基于概率电路的低功耗机学习处理器:卷积神经元网络需要大量晶体管和大功率耗散。研究人员将开发与磁记忆设备集成的神经元网络的随机计算实现,从而简化了乘法和加法操作,从而大大降低了功耗和芯片面积。 (b)基于概率电路的组合优化处理器:该项目还将开发概率优化电路,其中感兴趣的优化问题映射到了ASIC上适当设计的概率位的网络。 ASIC在这两个问题上的绩效和效率将与现有的通用计算硬件进行比较。该奖项反映了NSF的法定任务,并认为使用基金会的知识分子优点和更广泛的影响评估标准,认为值得通过评估来获得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pedram Khalili Amiri其他文献
A 65-nm ReRAM-Enabled Nonvolatile Processor With Time-Space Domain Adaption and Self-Write-Termination Achieving > 4x Faster Clock Frequency and > 6x Higher Restore Speed
具有时空域适应和自写终止功能的 65 nm ReRAM 非易失性处理器,可实现 > 4 倍更快的时钟频率和 > 6 倍更高的恢复速度
- DOI:
10.1109/jssc.2017.2724024 - 发表时间:
2017 - 期刊:
- 影响因子:5.4
- 作者:
Zhibo Wang;Yongpan Liu;Albert Lee;Fang Su;Chieh-Pu Lo;Zhe Yuan;Jinyang Li;Chien-Chen Lin;Wei-Hao Chen;Hsiao-Yun Chiu;Wei-En Lin;Ya-Chin King;Chrong-Jung Lin;Pedram Khalili Amiri;Kang-Lung Wang;Meng-Fan Chang;Huazhong Yang - 通讯作者:
Huazhong Yang
Large voltage-controlled magnetic anisotropy in the SrTiO3/Fe/Cu structure
SrTiO3/Fe/Cu 结构中的大电压控制磁各向异性
- DOI:
10.1063/1.4996275 - 发表时间:
2017 - 期刊:
- 影响因子:4
- 作者:
Shouzhong Peng;Sai Li;Wang Kang;Jiaqi Zhou;Na Lei;Youguang Zhang;Hongxin Yang;Xiang Li;Pedram Khalili Amiri;Kang L. Wang;Weisheng Zhao - 通讯作者:
Weisheng Zhao
Enhanced broadband RF detection in nanoscale magnetic tunnel junction by interface engineering
通过界面工程增强纳米级磁隧道结的宽带射频检测
- DOI:
10.1021/acsami.9b06706 - 发表时间:
2019 - 期刊:
- 影响因子:9.5
- 作者:
Like Zhang;Bin Fang;Jialin Cai;Weican Wu;Baoshun Zhang;Bochong Wang;Pedram Khalili Amiri;Giovanni Finocchio;Zhongming Zeng - 通讯作者:
Zhongming Zeng
Joule Heating Effect on Field-Free Magnetization Switching by Spin-Orbit Torque in Exchange-Biased Systems
交换偏置系统中自旋轨道扭矩对无场磁化开关的焦耳热效应
- DOI:
10.1103/physrevapplied.7.024023 - 发表时间:
2017-02 - 期刊:
- 影响因子:4.6
- 作者:
Seyed Armin Razavi;Di Wu;Guoqiang Yu;Yong-Chang Lau;Kin L. Wong;Weihua Zhu;Congli He;Zongzhi Zhang;J. M. D. Coey;Plamen Stamenov;Pedram Khalili Amiri;Kang L. Wang - 通讯作者:
Kang L. Wang
Pedram Khalili Amiri的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pedram Khalili Amiri', 18)}}的其他基金
Collaborative Research: SHF: Medium: Verifying Deep Neural Networks with Spintronic Probabilistic Computers
合作研究:SHF:中:使用自旋电子概率计算机验证深度神经网络
- 批准号:
2311296 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Scalable Three Terminal Memory Devices based on Silicon-Compatible Antiferromagnetic Materials
基于硅兼容反铁磁材料的可扩展三端子存储器件
- 批准号:
2203243 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Spintronic Spectrum Analyzer and Limiter based on Tunable Magnetic Tunnel Junction Arrays
基于可调谐磁隧道结阵列的自旋电子频谱分析仪和限制器
- 批准号:
2203242 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Ultrafast and Energy-efficient Anti-ferromagnetic Electric-field-controlled Memory Devices
超快且节能的反铁磁电场控制存储器件
- 批准号:
1853879 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
PFI-RP: Partnership to develop next-generation memory chips for intelligent computing systems.
PFI-RP:合作开发用于智能计算系统的下一代存储芯片。
- 批准号:
1919109 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SBIR Phase I: Electric-Field-Controlled Nonvolatile Magnetic Memory Devices
SBIR 第一阶段:电场控制的非易失性磁存储器件
- 批准号:
1314951 - 财政年份:2013
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
靶向Treg-FOXP3小分子抑制剂的筛选及其在肺癌免疫治疗中的作用和机制研究
- 批准号:32370966
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
化学小分子激活YAP诱导染色质可塑性促进心脏祖细胞重编程的表观遗传机制研究
- 批准号:82304478
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
靶向小胶质细胞的仿生甘草酸纳米颗粒构建及作用机制研究:脓毒症相关性脑病的治疗新策略
- 批准号:82302422
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
HMGB1/TLR4/Cathepsin B途径介导的小胶质细胞焦亡在新生大鼠缺氧缺血脑病中的作用与机制
- 批准号:82371712
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
小分子无半胱氨酸蛋白调控生防真菌杀虫活性的作用与机理
- 批准号:32372613
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: SHF: Small: RUI: CMOS+X: Honey-ReRAM Enabled 3D Neuromorphic Accelerator
合作研究:SHF:小型:RUI:CMOS X:Honey-ReRAM 支持的 3D 神经形态加速器
- 批准号:
2247343 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: RUI: CMOS+X: Honey-ReRAM Enabled 3D Neuromorphic Accelerator
合作研究:SHF:小型:RUI:CMOS X:Honey-ReRAM 支持的 3D 神经形态加速器
- 批准号:
2247342 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Development of a CMOS-based Very Large-Format X-ray Detector for Synchrotron Beam
基于 CMOS 的同步加速器光束超大幅面 X 射线探测器的研制
- 批准号:
8252692 - 财政年份:2012
- 资助金额:
$ 50万 - 项目类别:
Development of CMOS Based Large Format X-ray Detector for Protein Crystallography
基于 CMOS 的蛋白质晶体学大幅面 X 射线探测器的开发
- 批准号:
7907127 - 财政年份:2008
- 资助金额:
$ 50万 - 项目类别:
Development of CMOS Based Large Format X-ray Detector for Protein Crystallography
基于 CMOS 的蛋白质晶体学大幅面 X 射线探测器的开发
- 批准号:
8137784 - 财政年份:2008
- 资助金额:
$ 50万 - 项目类别: