Functional nanostructures and chemical systems by confined self-assembly: Construction principles and molecular transport processes

受限自组装的功能性纳米结构和化学系统:构建原理和分子传输过程

基本信息

项目摘要

Self-assembly of organic molecules or colloidal nanoparticles in a confined space represents an efficient strategy for producing novel functional nanomaterials and chemical systems. The aim of this project is to construct new porous materials, which exhibit specific nanostructures with tailored geometries or interactions in confinement. The construction principles underlying the related preparations will be elucidated, and a particular focus will be given to molecular transport analysis, to be systematically investigated by various NMR methods. The latter will serve structural analysis as well as supporting the mechanisms of various related functions.Based on the results achieved previously, we will extend the preparative efforts to more challenging systems with intricate three-dimensional structures of increasing complexity and functionality, which will be accompanied by pore structure analysis through transport studies. The emphasis will be on the following four aspects: A) A series of polymerizable amphiphilic molecules will be rationally designed and synthesized. In conjunction with sol-gel chemistry the self-assembled molecules confined in mesophases will be used to produce well-defined polymeric, carbon and metallic nanomaterials. B) These porous structures will be characterized by NMR diffusion studies and MR imaging to elucidate pore structures, with a particular focus on anisotropic materials and Li+ ion transport exploring their potential as electrolyte materials. C) By using monodisperse droplets in microfluidics as a confined space, uniform functional particles with hierarchical porous structure will be designed, including photonic inverse opal microspheres with controlled internal pore structure, and further extending the approach to MOFs and gold nanoparticle assemblies. D) Diffusion studies will yield structural information about the hierarchical pore systems with the aim to demonstrate functionality, for example controlled gating of pores by anion exchange or water-free ion conducting systems.
有机分子或胶体纳米粒子在有限空间中的自组装是制备新型功能纳米材料和化学体系的有效策略。该项目的目的是构建新的多孔材料,这些材料具有特定的纳米结构,具有定制的几何形状或限制中的相互作用。相关制剂的基础上的建设原则将得到阐明,并将给予一个特别的重点是分子传输分析,系统地研究了各种NMR方法。后者将服务于结构分析以及支持各种相关功能的机制。基于先前取得的成果,我们将把准备工作扩展到更具挑战性的系统,这些系统具有日益复杂和功能性的复杂三维结构,并将通过传输研究进行孔结构分析。重点将在以下四个方面展开:(1)合理设计和合成一系列可聚合的两亲性分子。结合溶胶-凝胶化学,限制在中间相中的自组装分子将用于生产定义明确的聚合物,碳和金属纳米材料。B)这些多孔结构将通过NMR扩散研究和MR成像来表征,以阐明孔结构,特别关注各向异性材料和Li+离子传输,探索其作为电解质材料的潜力。C)通过使用微流体中的单分散液滴作为受限空间,将设计具有分级多孔结构的均匀功能颗粒,包括具有受控内部孔结构的光子反蛋白石微球,并进一步将该方法扩展到MOF和金纳米颗粒组装体。D)扩散研究将产生关于分级孔系统的结构信息,目的是证明功能性,例如通过阴离子交换或无水离子传导系统控制孔的门控。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professorin Dr. Monika Schönhoff其他文献

Professorin Dr. Monika Schönhoff的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professorin Dr. Monika Schönhoff', 18)}}的其他基金

Polyelectrolyte Multilayer-Coated Colloids: Hydration, Internal Properties and Interactions
聚电解质多层涂层胶体:水合、内部性质和相互作用
  • 批准号:
    5415803
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Lithium ion transport in self-assembled zwitterionic nanochannels containing ionic liquids
含有离子液体的自组装两性离子纳米通道中的锂离子传输
  • 批准号:
    509154483
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

2023 RNA Nanotechnology Gordon Research Conference and Seminar
2023年RNA纳米技术戈登研究会议暨研讨会
  • 批准号:
    10598881
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Crosslinking-based targeted therapy for triple-negative breast cancer
基于交联的三阴性乳腺癌靶向治疗
  • 批准号:
    10650998
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
DNA nanotechnology enabled high-precision membrane engineering
DNA 纳米技术实现高精度膜工程
  • 批准号:
    10622748
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Virtual nanostructure simulation (VINAS) portal
虚拟纳米结构模拟 (VINAS) 门户
  • 批准号:
    10567076
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Developing a programmable siRNA-based therapeutic platform for gene silencing in the skin
开发基于 siRNA 的可编程治疗平台,用于皮肤基因沉默
  • 批准号:
    10723917
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Vibrational spectroscopy with metasurface optics (VISMO) for high-throughput identification of protein post-translational modifications
超表面光学振动光谱 (VISMO) 用于蛋白质翻译后修饰的高通量鉴定
  • 批准号:
    10761601
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Polyesters with controlled topologies for probing transcytosis at the gut-blood barrier
具有受控拓扑的聚酯用于探测肠血屏障的转胞吞作用
  • 批准号:
    10658083
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Optically Promoting Cardiac Maturation Using Engineered Peptides
使用工程肽光学促进心脏成熟
  • 批准号:
    10628281
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Optically Promoting Cardiac Maturation Using Engineered Peptides
使用工程肽光学促进心脏成熟
  • 批准号:
    10683790
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Anti-biofilm laser-mediated photothermal ablation via complex noble metal nanostructures
通过复杂的贵金属纳米结构进行抗生物膜激光介导的光热烧蚀
  • 批准号:
    10625065
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了