DNA nanotechnology enabled high-precision membrane engineering
DNA 纳米技术实现高精度膜工程
基本信息
- 批准号:10622748
- 负责人:
- 金额:$ 39.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-20 至 2028-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalBiochemicalBiophysicsBiotechnologyCell-Free SystemCellsCellular biologyChemicalsComplexDNADrug Delivery SystemsEngineeringFutureGeometryKnowledgeLipid BilayersLipidsLiposomesMediatingMembraneMembrane ProteinsMethodsModificationMolecularMotionNanostructuresNanotechnologyNutrientOrganellesProtein ConformationProteinsResearchRoleShapesSignal TransductionStructureSystemWaste Managementchemical propertylipid transportmechanical propertiesmembrane reconstitutionmolecular assembly/self assemblynanodisknanoengineeringnanoporephysical propertyprotein functionreconstitutionstructural biologysynthetic biologytooltraffickinguptake
项目摘要
PROJECT SUMMARY
Lipid-bilayer membranes form diverse and dynamic structures in cells to serve vital functions including nutrient
uptake, waste managements, signal transduction, and so on. Understanding the molecular mechanisms by
which the cell generates and changes its membrane structures has been a central task of cell biology. It is well
established that the physical and chemical properties of membranes regulate their interactions with proteins,
which in turn shape the membrane landscape. However, there are still major knowledge gaps regarding how
proteins act upon different membrane curvature and tension, especially when the membrane structure and/or
the membrane-protein interaction are transient. Cell-free systems using reconstituted membranes provide a
powerful method to study such intricate molecular interplays. However, there is still a pressing need for a
precisely engineered platform that (1) exquisitely controls the geometrical, biochemical and mechanical
properties of membranes and (2) easily allows for biochemical and structural characterization of membrane-
associating proteins. Using DNA nanotechnology, a bottom-up method that generates three-dimensional
molecular assemblies with programmable shape, stiffness, chemical modification, and motion, we propose to
build nanoengineered membranes to bridge the technical gap in membrane manipulation and to unravel the
mechanisms of protein-mediated membrane dynamics. Specifically, we will develop tools to (1) generate
accessible membranes with complex shapes for the quantitative study of curvature-dependent protein-
membrane interactions, (2) build liposomes and lipid nanodiscs with dynamically tunable tension to study the
role of membrane tension in regulating protein conformation and lipid transport, and (3) create transmembrane
nanopores with tunable size and chemical selectivity for the reconstitution of organelle-like compartments. We
expect these new tools to be enabling and potentially transformative for research in structural biology,
biophysics, mechanobiology, and synthetic biology.
项目摘要
脂质双层膜在细胞中形成多种多样的动态结构,以提供重要功能,包括营养
吸收,废物管理,信号转导等。了解分子机制,
细胞产生并改变其膜结构的细胞是细胞生物学的中心任务。公
确定了膜的物理和化学性质调节它们与蛋白质的相互作用,
进而形成膜景观。然而,在如何实现这一目标方面,
蛋白质作用于不同的膜曲率和张力,特别是当膜结构和/或
膜-蛋白质相互作用是短暂的。使用重构膜的无细胞系统提供了
研究这种复杂的分子相互作用的有力方法。然而,仍然迫切需要一个
精确设计的平台,(1)精致地控制几何,生物化学和机械
膜的性质和(2)易于进行膜的生化和结构表征-
相关蛋白质。利用DNA纳米技术,一种自下而上的方法,
具有可编程形状、刚度、化学修饰和运动的分子组装,我们建议
建立纳米工程膜,以弥合膜操作的技术差距,并解开
蛋白质介导的膜动力学机制。具体来说,我们将开发工具来(1)生成
具有复杂形状的可及膜,用于曲率依赖性蛋白质的定量研究,
膜相互作用,(2)构建具有动态可调张力的脂质体和脂质纳米盘,以研究
膜张力在调节蛋白质构象和脂质转运中的作用,以及(3)产生跨膜
具有可调尺寸和化学选择性的纳米孔,用于重构细胞器样隔室。我们
我希望这些新工具能够为结构生物学的研究提供支持,并具有潜在的变革性,
生物物理学、机械生物学和合成生物学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chenxiang Lin其他文献
Chenxiang Lin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chenxiang Lin', 18)}}的其他基金
A multiscale approach for elucidating nuclear entry mechanisms of HIV-1 capsid
阐明 HIV-1 衣壳核进入机制的多尺度方法
- 批准号:
10793845 - 财政年份:2021
- 资助金额:
$ 39.08万 - 项目类别:
A multiscale approach for elucidating nuclear entry mechanisms of HIV-1 capsid
阐明 HIV-1 衣壳核进入机制的多尺度方法
- 批准号:
10490880 - 财政年份:2021
- 资助金额:
$ 39.08万 - 项目类别:
Fluid shear stress mechanotransduction at endothelial cell-cell junctions
内皮细胞-细胞连接处的流体剪切应力机械转导
- 批准号:
10688712 - 财政年份:2021
- 资助金额:
$ 39.08万 - 项目类别:
A multiscale approach for elucidating nuclear entry mechanisms of HIV-1 capsid
阐明 HIV-1 衣壳核进入机制的多尺度方法
- 批准号:
10676822 - 财政年份:2021
- 资助金额:
$ 39.08万 - 项目类别:
A multiscale approach for elucidating nuclear entry mechanisms of HIV-1 capsid
阐明 HIV-1 衣壳核进入机制的多尺度方法
- 批准号:
10794022 - 财政年份:2021
- 资助金额:
$ 39.08万 - 项目类别:
Fluid shear stress mechanotransduction at endothelial cell-cell junctions
内皮细胞-细胞连接处的流体剪切应力机械转导
- 批准号:
10322398 - 财政年份:2021
- 资助金额:
$ 39.08万 - 项目类别:
A multiscale approach for elucidating nuclear entry mechanisms of HIV-1 capsid
阐明 HIV-1 衣壳核进入机制的多尺度方法
- 批准号:
10402986 - 财政年份:2021
- 资助金额:
$ 39.08万 - 项目类别:
Fluid shear stress mechanotransduction at endothelial cell-cell junctions
内皮细胞-细胞连接处的流体剪切应力机械转导
- 批准号:
10559534 - 财政年份:2021
- 资助金额:
$ 39.08万 - 项目类别:
A Nanomechanical Toolkit to Guide Membrane Structure and Dynamics
指导膜结构和动力学的纳米机械工具包
- 批准号:
10378021 - 财政年份:2019
- 资助金额:
$ 39.08万 - 项目类别:
Generating nuclear pore complex mimics with DNA origami
用 DNA 折纸生成核孔复合体模拟物
- 批准号:
8621296 - 财政年份:2014
- 资助金额:
$ 39.08万 - 项目类别:
相似海外基金
CAREER: Biochemical and Structural Mechanisms Controlling tRNA-Modifying Metalloenzymes
职业:控制 tRNA 修饰金属酶的生化和结构机制
- 批准号:
2339759 - 财政年份:2024
- 资助金额:
$ 39.08万 - 项目类别:
Continuing Grant
Leveraging releasable aryl diazonium ions to probe biochemical systems
利用可释放的芳基重氮离子探测生化系统
- 批准号:
2320160 - 财政年份:2023
- 资助金额:
$ 39.08万 - 项目类别:
Standard Grant
Diurnal environmental adaptation via circadian transcriptional control based on a biochemical oscillator
基于生化振荡器的昼夜节律转录控制的昼夜环境适应
- 批准号:
23H02481 - 财政年份:2023
- 资助金额:
$ 39.08万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Systematic manipulation of tau protein aggregation: bridging biochemical and pathological properties
tau 蛋白聚集的系统操作:桥接生化和病理特性
- 批准号:
479334 - 财政年份:2023
- 资助金额:
$ 39.08万 - 项目类别:
Operating Grants
Converting cytoskeletal forces into biochemical signals
将细胞骨架力转化为生化信号
- 批准号:
10655891 - 财政年份:2023
- 资助金额:
$ 39.08万 - 项目类别:
Enhanced Biochemical Monitoring for Aortic Aneurysm Disease
加强主动脉瘤疾病的生化监测
- 批准号:
10716621 - 财政年份:2023
- 资助金额:
$ 39.08万 - 项目类别:
Biochemical Mechanisms for Sustained Humoral Immunity
持续体液免疫的生化机制
- 批准号:
10637251 - 财政年份:2023
- 资助金额:
$ 39.08万 - 项目类别:
Structural and biochemical investigations into the mechanism and evolution of soluble guanylate cyclase regulation
可溶性鸟苷酸环化酶调节机制和进化的结构和生化研究
- 批准号:
10604822 - 财政年份:2023
- 资助金额:
$ 39.08万 - 项目类别:
Chemical strategies to investigate biochemical crosstalk in human chromatin
研究人类染色质生化串扰的化学策略
- 批准号:
10621634 - 财政年份:2023
- 资助金额:
$ 39.08万 - 项目类别:
Examination of risk assessment and biochemical assessment of fracture development focusing on the body composition of patients with rheumatoid arthritis
关注类风湿性关节炎患者身体成分的骨折发生风险评估和生化评估检查
- 批准号:
22KJ2600 - 财政年份:2023
- 资助金额:
$ 39.08万 - 项目类别:
Grant-in-Aid for JSPS Fellows