Construction of Optimal and Efficient Designs of Experiments for Individualized Prediction in Hierarchical Models

分层模型中个性化预测的最优高效实验设计的构建

基本信息

项目摘要

The object of the present project is hierarchical random coefficient regression models as well as generalized linear and nonlinear mixed models. Such models were initially introduced in biosciences for plant and animal breeding and are nowadays utilized in an increasing number of fields in statistical applications. The aim of the project is to develop analytical approaches for the determination of optimal designs for the problem of prediction in these models. The most available analytical results for experimental designs have the form of an optimality condition in the sense of an equivalence theorem. Only for some particular cases the solutions are given explicitly. Methods for the computation of optimal designs are a substantial part of this project.Analytical approaches for the determination of optimal designs are often successfully based on the concept of approximate designs. Although approximate designs are not directly realizable, optimal or at least efficient exact designs can be determined using suitable rounding algorithms, in which approximate designs may then serve as a benchmark for the efficiency of the obtained exact designs. Within this project the construction and characterization of optimal designs will be investigated in detail under realistic experimental restrictions caused by overall experimental conditions (balanced longitudinal, cross sectional, sparse, multi-factor or randomized block designs). It has to be noted that the so obtained optimal designs are only locally optimal in the sense that they depend on the dispersion matrix of the random effects. If the dispersion matrix is unknown, this problem will be attacked by using so-called robust design criteria, which show a low sensitivity with respect to the dispersion parameters. In the final part of the project the results obtained for linear random coefficient regression models will be extended to more complicated (generalized linear and nonlinear mixed) models.
本课题的研究对象是分层随机系数回归模型以及广义线性和非线性混合模型。这种模型最初被引入到植物和动物育种的生物科学中,现在在越来越多的统计应用领域中使用。该项目的目的是开发分析方法,用于确定这些模型中预测问题的最佳设计。实验设计的最有效的分析结果具有等价定理意义上的最优性条件的形式。仅对某些特殊情况给出了明确的解。最优设计的计算方法是这个项目的重要组成部分。确定最优设计的分析方法通常成功地基于近似设计的概念。虽然近似设计不能直接实现,但可以使用合适的舍入算法来确定最优或至少有效的精确设计,其中近似设计然后可以用作所获得的精确设计的效率的基准。在本项目中,将在由整体实验条件(平衡纵向、横截面、稀疏、多因素或随机区组设计)引起的现实实验限制下详细研究最优设计的构建和表征。必须指出的是,这样获得的最优设计仅是局部最优的,因为它们依赖于随机效应的色散矩阵。如果色散矩阵是未知的,这个问题将通过使用所谓的鲁棒设计准则来解决,鲁棒设计准则显示出相对于色散参数的低灵敏度。在项目的最后部分,线性随机系数回归模型的结果将扩展到更复杂的(广义线性和非线性混合)模型。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Equivalence theorems for multiple-design problems with application in mixed models
多重设计问题的等价定理及其在混合模型中的应用
Various optimality criteria for the prediction of individual response curves
  • DOI:
    10.1016/j.spl.2018.10.022
  • 发表时间:
    2019-03-01
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Prus, Maryna
  • 通讯作者:
    Prus, Maryna
Optimal Design in Hierarchical Random Effect Models for Individual Prediction with Application in Precision Medicine
个体预测分层随机效应模型的优化设计及其在精准医学中的应用
Computing optimal experimental designs with respect to a compound Bayes risk criterion
根据复合贝叶斯风险准则计算最佳实验设计
Optimal designs for minimax-criteria in random coefficient regression models
  • DOI:
    10.1007/s00362-018-01072-w
  • 发表时间:
    2018-11
  • 期刊:
  • 影响因子:
    1.3
  • 作者:
    Maryna Prus
  • 通讯作者:
    Maryna Prus
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Rainer Schwabe其他文献

Professor Dr. Rainer Schwabe的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

An Atomic Level Understanding of Optimal Characteristics of TiO2 Protection Layers and Photoelectrode/TiO2 Interfaces for Efficient and Stable Solar Fuel Production
从原子水平了解 TiO2 保护层和光电极/TiO2 界面的最佳特性,以实现高效、稳定的太阳能燃料生产
  • 批准号:
    2350199
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Exploiting fully coupled fluid-structure interaction: optimal wing heterogeneity and efficient flow state estimation in flapping flight
利用完全耦合的流固相互作用:扑翼飞行中的最佳机翼异质性和有效的流动状态估计
  • 批准号:
    2320875
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Optimal Technology Policies for Achieving Efficient Economic Development in Developing Countries
发展中国家实现高效经济发展的最佳技术政策
  • 批准号:
    23KJ0715
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Study on an Efficient Unified Method for Obtaining Optimal Design of the Multi-Dimensional, Multi-State and Multi-Objective Network System Considering Similar Shape of Graphs
考虑图相似形状的多维、多状态、多目标网络系统优化设计的高效统一方法研究
  • 批准号:
    22K04603
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: AF: Small: Efficient Algorithms for Optimal Transport in Geometric Settings
合作研究:AF:小:几何设置中最佳传输的高效算法
  • 批准号:
    2223871
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: Efficient Algorithms for Optimal Transport in Geometric Settings
合作研究:AF:小:几何设置中最佳传输的高效算法
  • 批准号:
    2223870
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Efficient Distribution Classification Tasks via Optimal Transport Embeddings
通过最优传输嵌入实现高效的分布分类任务
  • 批准号:
    2306064
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Efficient Distribution Classification Tasks via Optimal Transport Embeddings
通过最优传输嵌入实现高效的分布分类任务
  • 批准号:
    2111322
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Determination of optimal antisense oligonucleotide chemistry for efficient and safe splicing modulation in T cells
确定最佳反义寡核苷酸化学,以实现 T 细胞中高效、安全的剪接调节
  • 批准号:
    9907140
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
NeTS: Small: Toward Optimal, Efficient, and Holistic Networking Design for Massive-MIMO Wireless Networks
NeTS:小型:面向大规模 MIMO 无线网络的优化、高效和整体网络设计
  • 批准号:
    2102233
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了