Multiscale investigation of fatigue crack growth in high performance concrete based on computer tomography and phase-field fracture modeling

基于计算机断层扫描和相场断裂建模的高性能混凝土疲劳裂纹扩展的多尺度研究

基本信息

项目摘要

High-performance concrete (HPC) is nowadays widely used for the construction of concrete components for bridges, towers, offshore rigs, crane runways, tall buildings, wind turbines and roads, all structures that are particularly susceptible to cyclic loading. Currently, the opportunities that arise from the use of HPC cannot be fully exploited because of overly conservative design standards. This mainly results from the lack of knowledge regarding the material degradation under fatigue loading. The aim of this project is to fill these knowledge gaps.It is nowadays widely recognized that new insight on the behavior of concrete can be gained through an explicit modeling of its heterogeneous structure. In this project, a multiscale computational model of HPC will be set up to shed light on the fundamentals of the fatigue performance, and in particular on how the damage and crack pattern and crack growth rate are influenced by the material characteristics and by the heterogeneous geometry. The computational model will focus on the so-called mesoscale, where HPC will be considered constituted by bulk cement mortar, coarse aggregates, air voids and interfacial mortar between aggregates and bulk mortar. The multiscale nature of the model will arise from the need to properly assign material properties to the bulk and interfacial mortars, which in turn are constituted by cement paste, fine aggregates and pores at the lower scale (microscale). The micro-mesoscale transition will be based on the assumption that the fracture properties of mortar mainly depend on the local porosity. Damage and cracking will be described with a phase-field modeling approach extended to incorporate fatigue effects.A comprehensive experimental program will be carried out. The fracture properties of the bulk and interfacial mortars will be characterized as functions of the local porosity, thus substantiating the micro-mesoscale transition experimentally. The geometry of the mesoscale model will be entirely based on geometry acquisition from Computer Tomography (CT). For this purpose, innovative techniques will be developed to enhance the contrast between aggregates and mortar and enable automatic image segmentation. Crack initiation and propagation phenomena will be observed through testing, including testing within the CT chamber with full-field three-dimensional measurement of strain and displacement under load, under monotonic and cyclic loading conditions. The experiments will allow for a thorough validation of the computational model and both will shed light on the fundamental mechanisms of fatigue failure in HPC.
高性能混凝土(HPC)如今广泛用于桥梁、塔架、海上钻井平台、起重机跑道、高层建筑、风力涡轮机和道路的混凝土构件的构造,所有结构都特别容易受到循环载荷的影响。目前,由于过于保守的设计标准,使用HPC带来的机会无法充分利用。这主要是由于缺乏关于疲劳载荷下材料退化的知识。这个项目的目的是填补这些知识空白。现在人们普遍认识到,通过显式建模其异质结构可以获得对混凝土行为的新见解。在这个项目中,HPC的多尺度计算模型将被建立,以阐明疲劳性能的基本原理,特别是损伤和裂纹模式和裂纹扩展速率如何受到材料特性和非均匀几何形状的影响。计算模型将集中在所谓的中尺度,其中HPC将被认为是由散装水泥砂浆,粗骨料,空隙和骨料和散装砂浆之间的界面砂浆。该模型的多尺度性质将出现从需要适当分配的散装和界面砂浆,这反过来又是由水泥浆,细骨料和孔隙在较低的尺度(微尺度)的材料特性。细观尺度的转变将基于砂浆的断裂特性主要取决于局部孔隙率的假设。将用相场模拟方法描述损伤和开裂,扩展到包括疲劳效应。将进行全面的实验计划。的散装和界面砂浆的断裂性能将其特征在于作为局部孔隙率的函数,从而证实了微观-介观尺度的过渡实验。中尺度模型的几何形状将完全基于计算机断层扫描(CT)的几何形状采集。为此,将开发创新技术,以增强骨料和砂浆之间的对比度,并实现自动图像分割。将通过试验观察裂纹萌生和扩展现象,包括在CT室内进行试验,并在单调和循环载荷条件下对载荷下的应变和位移进行全场三维测量。实验将允许一个彻底的验证的计算模型,都将揭示在HPC疲劳破坏的基本机制。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr.-Ing. Thorsten Leusmann其他文献

Dr.-Ing. Thorsten Leusmann的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Investigation of the fibre-matrix interface for glass fibre & carbon fibre composites exposed to cryogenic loading and fatigue conditions.
玻璃纤维纤维-基体界面的研究
  • 批准号:
    2889289
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Impact of Obesity on Chemotherapy-Induced Cytotoxicity: Immune Cells and Skeletal Muscle
肥胖对化疗引起的细胞毒性的影响:免疫细胞和骨骼肌
  • 批准号:
    10572695
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Exploring the Collaborative Cross resource to identify different phenotypes of Lyme neuroborreliosis and disease-contributing genetic factors
探索协作交叉资源以确定莱姆神经疏螺旋体病的不同表型和疾病致病遗传因素
  • 批准号:
    10666026
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Differences in Women and Men with Atrial Fibrillation
女性和男性房颤患者的差异
  • 批准号:
    10822952
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Sleep-Wake Cycles of Individuals with Inflammatory Bowel Disease
炎症性肠病患者的睡眠-觉醒周期
  • 批准号:
    10604701
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Quantifying neural variability and learning during real world brain-computer interface use
量化现实世界脑机接口使用过程中的神经变异和学习
  • 批准号:
    10838152
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Investigation on the effects of fatigue and creep on the frecture mechanics properties of solid wood
疲劳和蠕变对实木断裂力学性能影响的研究
  • 批准号:
    23H02277
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
The Impact of a Race-Based Stress Reduction Intervention on Well-Being, Inflammation, and DNA methylation in Older African American Women at Risk for Cardiometabolic Disease
基于种族的减压干预措施对有心血管代谢疾病风险的老年非洲裔美国女性的健康、炎症和 DNA 甲基化的影响
  • 批准号:
    10633624
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Enhancing Sympathetic Outflow Control Following Spinal Cord Injury Using Targeted Plasticity Therapy
使用靶向可塑性疗法增强脊髓损伤后的交感神经流出控制
  • 批准号:
    10637220
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Behavioral and Neural Correlates of Post-Stroke Fatigue
中风后疲劳的行为和神经相关性
  • 批准号:
    10725951
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了