Quantum criticality: coupled renormalization of electrons and order parameter fluctuations

量子临界性:电子重正化与有序参数波动的耦合

基本信息

项目摘要

In this project we study several types of quantum phase transitions in interacting Fermi systems, between a symmetric phase and an ordered phase with spontaneously broken symmetry. These include the nematic transition in metals, a normal to superfluid transition in semi-metals, and chiral symmetry breaking in the (relativistic) Thirring model. The main focus will be on (2+1)-dimensional systems. We are particularly interested in systems for which an effective order parameter theory truncated at quartic order in the fields (Hertz-Millis theory) does not describe the low energy behavior correctly. The functional RG will be used to analyze the coupled system of electronic excitations and order parameter fluctuations, that is, fermions and bosons will be integrated out simultaneously. We will try to derive and solve a set of flow equations which properly treats all the entangled singularities appearing near the quantum phase transition. We will access all regions of the phase diagram, including the symmetry-broken regime and regimes governed by non-Gaussian fluctuations. We will take full advantage of the possibilities of the functional RG by allowing also for truly functional flows, such as flows of the fullo rder parameter potential, capturing vertices with arbitrary powers of the fields.
在这个项目中,我们研究了相互作用费米系统中的几种类型的量子相变,在对称相和具有自发破缺对称性的有序相之间。这些包括金属中的超临界转变,半金属中的正常到超流转变,以及(相对论)Thirring模型中的手征对称性破缺。主要的重点将放在(2+1)维系统。我们特别感兴趣的系统,有效的序参量理论截断在四阶的领域(赫兹-米利斯理论)不正确地描述低能量的行为。泛函RG将用于分析电子激发和序参量涨落的耦合系统,即同时积分出费米子和玻色子。我们将尝试导出并求解一组流方程,它能恰当地处理出现在量子相变附近的所有纠缠奇点。我们将访问相图的所有区域,包括非高斯波动的破缺区域和区域。我们将充分利用功能RG的可能性,也允许真正的功能流,如流的fullorder参数的潜力,捕捉与任意权力的领域的顶点。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Walter Metzner其他文献

Professor Dr. Walter Metzner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Walter Metzner', 18)}}的其他基金

Renormierungsgruppen-Analyse zweidimensionaler Elektronen-Systeme
二维电子系统的重正化群分析
  • 批准号:
    5321220
  • 财政年份:
    2001
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Young People, Criticality and Figurative Language
年轻人、批判性和比喻语言
  • 批准号:
    AH/Z505821/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
CAREER: Unconventional superconductivity and disordered criticality in two dimensions
职业:非常规超导性和二维无序临界性
  • 批准号:
    2341066
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Random-field effects in spin models: Supersymmetry, criticality, and universality
自旋模型中的随机场效应:超对称性、临界性和普遍性
  • 批准号:
    EP/X026116/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Linear Response and Koopman Modes: Prediction and Criticality - LINK
线性响应和库普曼模式:预测和临界性 - LINK
  • 批准号:
    EP/Y026675/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Comprehensive understanding of the quantum criticality yielding the exotic superconductivity and the non-Fermi-liquid behavior
全面了解产生奇异超导性和非费米液体行为的量子临界性
  • 批准号:
    23K03315
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Modelling and Simulation of Transient Nuclear Criticality Excursions Containing Special Nuclear Materials
包含特殊核材料的瞬态核临界偏移的建模和仿真
  • 批准号:
    2891950
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Criticality of Urban Networks: Untangling the Complexity of Urban Congestion
城市网络的重要性:解决城市拥堵的复杂性
  • 批准号:
    2311159
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER:Superconductivity, fractionalization and quantum criticality in multilayer quantum simulator
职业:多层量子模拟器中的超导、分级和量子临界性
  • 批准号:
    2237031
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: Quantum Criticality, Localization and Dynamics in Quasiperiodic Systems
合作研究:准周期系统中的量子临界性、局域化和动力学
  • 批准号:
    2334056
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Nuclear Magnetic Resonance Studies of Quantum Criticality in Correlated Electron Materials
相关电子材料量子临界性的核磁共振研究
  • 批准号:
    2210613
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了