Compact traveling waves for mean-curvature flow with driving force

带驱动力的平均曲率流的紧凑行波

基本信息

  • 批准号:
    18K13458
  • 负责人:
  • 金额:
    $ 1.91万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
  • 财政年份:
    2018
  • 资助国家:
    日本
  • 起止时间:
    2018-04-01 至 2022-03-31
  • 项目状态:
    已结题

项目摘要

项目成果

期刊论文数量(28)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fisher-Stefan problems and the singular limit of reaction-diffusion systems
Fisher-Stefan 问题和反应扩散系统的奇异极限
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    木野 仁;後藤 雅明;小杉 卓裕;金城 善博;田原 健二;Koji Tsukuda;Sakakibara Koya;Harunori Monobe
  • 通讯作者:
    Harunori Monobe
国立台南大学(その他の国・地域)
国立台南大学(其他国家/地区)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Compact traveling wave for anisotropic curvature flow with driving force
带驱动力的各向异性曲率流的紧凑行波
Behaviour of solutions to an interface equation with exponential curvature
具有指数曲率的界面方程解的行为
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Koji Tsukuda;Yoichi Nishiyama;川原田 茜;Harunori Monobe;D.A. Mejia;Takiko Sasaki;小杉卓裕,佐藤龍一;Harunori Monobe
  • 通讯作者:
    Harunori Monobe
University of Wyoming(米国)
怀俄明大学(美国)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MONOBE HARUNORI其他文献

MONOBE HARUNORI的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MONOBE HARUNORI', 18)}}的其他基金

Analysis and construction of interface equation without self-intersections
无自交界面方程的分析与构造
  • 批准号:
    15K17595
  • 财政年份:
    2015
  • 资助金额:
    $ 1.91万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)

相似海外基金

半空間上での離散型ボルツマン方程式の進行波解の存在及び漸近安定性
半空间上离散玻尔兹曼方程行波解的存在性及渐近稳定性
  • 批准号:
    12740116
  • 财政年份:
    2000
  • 资助金额:
    $ 1.91万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
金属結晶成長の数理モデルに現れる螺旋状進行波解の漸近解析的研究
金属晶体生长数学模型中螺旋行波解的渐近解析研究
  • 批准号:
    12740058
  • 财政年份:
    2000
  • 资助金额:
    $ 1.91万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
空間的に非一様な反応拡散方程式系に現れる進行波解の伝播制御に関する研究
空间非均匀反应扩散方程组行波解的传播控制研究
  • 批准号:
    10740049
  • 财政年份:
    1998
  • 资助金额:
    $ 1.91万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
進行波解の構造と安定性に対する位相的方法の研究
行波解结构与稳定性的拓扑方法研究
  • 批准号:
    09740133
  • 财政年份:
    1997
  • 资助金额:
    $ 1.91万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
反応-拡散方程式系における進行波解の存在と安定性
反应扩散方程组行波解的存在性及稳定性
  • 批准号:
    01740119
  • 财政年份:
    1989
  • 资助金额:
    $ 1.91万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了