MORSE - Theoretical methods in Hamiltonian dynamics
莫尔斯 - 哈密顿动力学的理论方法
基本信息
- 批准号:380257369
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2017
- 资助国家:德国
- 起止时间:2016-12-31 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Since the work of Morse on Riemannian geodesics, Morse theoretical methods have been powerful tools in the non-perturbative study of Hamiltonian systems. These methods rely on many variational principles which shape Hamiltonian dynamics, the most important of which are the Lagrangian and the Hamiltonian actions. While the former functional can be efficiently studied by the infinite dimensional Morse theory, the latter one requires more sophisticated methods such as the Floer theory.As many good mathematical theories, Floer theory does its best when related to other ones. The quest for such interrelations is far from being completed, and a better understanding of them can be expected to help in solving some of the open problems in Hamiltonian dynamics.Floer homology is quite effective in the study of periodic orbits, but for now has had only a limited success in the study of homoclinic orbits, in which classical variational methods are still more efficient. Since homoclinics and heteroclinics are important objects in the understanding of global behaviour of Hamiltonian systems, it would be desirable to have more methods to tackle them.Our proposal intends to address these two issues and can be summarised into the following two scientific aims:1. Develop alternative and complementary approaches to Hamiltonian Floer theory, both for abstract functionals and for the Hamiltonian action functional on the loop space of particular symplectic manifolds.2. Refine the existing variational methods and develop new tools for the study of homoclinics and heteroclinics in Hamiltonian dynamics beyond the class of natural Hamiltonian systems.
自从Morse关于黎曼测地线的工作以来,Morse理论方法一直是哈密顿系统非微扰研究的有力工具。这些方法依赖于许多塑造哈密顿动力学的变分原理,其中最重要的是拉格朗日和哈密顿作用量。无限维Morse理论可以有效地研究前者的泛函,而后者需要更复杂的方法,如Floer理论,与许多优秀的数学理论一样,Floer理论在与其他理论相关时发挥了最大作用。对这种相互关系的探索还远未完成,对它们的更好理解有望帮助解决哈密顿动力学中的一些公开问题。Floer同调在周期轨道的研究中非常有效,但目前在同宿轨道的研究中只取得了有限的成功,其中经典变分方法仍然更有效。由于同宿和异宿是理解哈密顿系统整体行为的重要对象,因此需要更多的方法来解决这两个问题。我们的建议旨在解决这两个问题,并可概括为以下两个科学目标:1.发展哈密顿Floer理论的替代和补充方法,包括抽象泛函和特殊辛流形的环空间上的哈密顿作用泛函。改进现有的变分方法,开发新的工具来研究超越自然哈密顿系统类的哈密顿动力学中的同宿和异宿。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Alberto Abbondandolo其他文献
Professor Dr. Alberto Abbondandolo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Alberto Abbondandolo', 18)}}的其他基金
Periodic orbits of conservative systems below the Mañé critical energy value
低于 Mañé 临界能量值的保守系统的周期轨道
- 批准号:
273417880 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Research Grants
Middle-dimensional squeezing and non-squeezing phenomena in Hamiltonian dynamics on finite dimensional and infinite-dimensional phase spaces
有限维和无限维相空间哈密顿动力学中的中维挤压和非挤压现象
- 批准号:
242354134 - 财政年份:2013
- 资助金额:
-- - 项目类别:
相似海外基金
Theoretical Guarantees of Machine Learning Methods for High Dimensional Partial Differential Equations: Numerical Analysis and Uncertainty Quantification
高维偏微分方程机器学习方法的理论保证:数值分析和不确定性量化
- 批准号:
2343135 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Development of Theoretical Design Methods of Catalysts Based on Electronic Structure Theory and Their Applications to Design and Development of High-Performance Molecular Catalysts
基于电子结构理论的催化剂理论设计方法发展及其在高性能分子催化剂设计与开发中的应用
- 批准号:
22KJ0003 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Utilization of theoretical calculations to the development of versatile detection methods of chemical warfare agents
利用理论计算开发化学战剂的多功能检测方法
- 批准号:
23K13526 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
A theoretical framework and mixed-methods investigation of documentation status as a social determinant of emergency care utilization in adult safety-net patients
文件状况作为成人安全网患者紧急护理利用的社会决定因素的理论框架和混合方法调查
- 批准号:
10617118 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Development and In Vivo Validation of a Theoretical Framework and Practical Methods to Improve Safety and Efficacy of Neuromodulation Electrodes
提高神经调节电极安全性和有效性的理论框架和实用方法的开发和体内验证
- 批准号:
10572029 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Computational and theoretical understanding of regulatory mechanisms shaping natural vision
对塑造自然视觉的调节机制的计算和理论理解
- 批准号:
10723937 - 财政年份:2023
- 资助金额:
-- - 项目类别:
The Application of a Theoretical Framework to Assess the Acceptability of a Health-Related Social Needs Screening Tool Among Black Patients In New York City
应用理论框架评估纽约市黑人患者对健康相关社会需求筛查工具的接受程度
- 批准号:
10826205 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Exploring Response Properties of Molecules and Extended Systems Using Theoretical Methods
使用理论方法探索分子和扩展系统的响应特性
- 批准号:
2152633 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Graph Theoretical Methods for Blockchain Data Analysis
区块链数据分析的图论方法
- 批准号:
2139349 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Research Initiation Award: Theoretical and Computational Methods for Robust Retrieval of Effective Electromagnetic Properties of Random Composite Materials
研究启动奖:鲁棒检索随机复合材料有效电磁特性的理论和计算方法
- 批准号:
2101012 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant