ZETAGROUPDYN_Zeta functions of groups and dynamical systems
ZETAGROUPDYN_群和动力系统的 Zeta 函数
基本信息
- 批准号:380258175
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2017
- 资助国家:德国
- 起止时间:2016-12-31 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Zeta functions of groups are typically Dirichlet generating functions encoding arithmetic information about infinite groups - or infinite families of finite groups - and thereby facilitating the application of analytic methods to study the data. Prominent examples are subgroup zeta functions resp. representation zeta functions reflecting the distribution of finite index subgroups resp. finite dimensional irreducible representations of a given group. Significant advances were recently made in understanding representation zeta functions of arithmetic groups, such as the special linear group over the ring of integers of a number field.Reidemeister Nielsen fixed-point-theory is aimed at studying the fixed points of iterated self-maps on connected compact manifolds. Naturally arising relevant invariants, such as the Nielsen and Reidemeister numbers, are encoded by means of suitable zeta functions. In terms of the fundamental group of the manifold, these zeta functions can be seen as dynamical zeta functions of groups equipped with an endomorphism. Significant results include the rationality of such zeta functions and functional equations for certain types of endomorphisms on nilpotent groups.The proposed research is to be carried out via three PhD projects. Our aim is to connect the two areas, viz. zeta functions of groups and dynamical zeta functions, in order to obtain fundamental new insights. We will transfer concepts and methods between the two areas in an original way, pioneering substantial connections between the two areas. It is our expectation that this will form a springboard for future cooperations in this direction.
Zeta functions of groups are typically Dirichlet generating functions encoding arithmetic information about infinite groups - or infinite families of finite groups - and thereby facilitating the application of analytic methods to study the data. Prominent examples are subgroup zeta functions resp. representation zeta functions reflecting the distribution of finite index subgroups resp. finite dimensional irreducible representations of a given group. Significant advances were recently made in understanding representation zeta functions of arithmetic groups, such as the special linear group over the ring of integers of a number field.Reidemeister Nielsen fixed-point-theory is aimed at studying the fixed points of iterated self-maps on connected compact manifolds. Naturally arising relevant invariants, such as the Nielsen and Reidemeister numbers, are encoded by means of suitable zeta functions. In terms of the fundamental group of the manifold, these zeta functions can be seen as dynamical zeta functions of groups equipped with an endomorphism. Significant results include the rationality of such zeta functions and functional equations for certain types of endomorphisms on nilpotent groups.The proposed research is to be carried out via three PhD projects. Our aim is to connect the two areas, viz. zeta functions of groups and dynamical zeta functions, in order to obtain fundamental new insights. We will transfer concepts and methods between the two areas in an original way, pioneering substantial connections between the two areas. It is our expectation that this will form a springboard for future cooperations in this direction.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Benjamin Klopsch其他文献
Professor Dr. Benjamin Klopsch的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Benjamin Klopsch', 18)}}的其他基金
Representation zeta functions associated to arithmetic groups and compact analytic groups
与算术群和紧解析群相关的 zeta 函数表示
- 批准号:
262827805 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
数学物理中精确可解模型的代数方法
- 批准号:11771015
- 批准年份:2017
- 资助金额:48.0 万元
- 项目类别:面上项目
相似海外基金
Measuring Expectancy Effects of Transcranial Direct Current Stimulation on Motor Learning
测量经颅直流电刺激对运动学习的预期效果
- 批准号:
10667041 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Cortical Complications of Perimenopause and Obstructive Sleep Apnea in Underrepresented Middle-Aged Women with Type 2 Diabetes
代表性不足的 2 型糖尿病中年女性的围绝经期皮质并发症和阻塞性睡眠呼吸暂停
- 批准号:
10901012 - 财政年份:2023
- 资助金额:
-- - 项目类别:
New developments of hypergeometric functions and hypergeometric groups
超几何函数和超几何群的新进展
- 批准号:
22K03365 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Effects of Bilateral Motor Priming and Task Specific Training on Corticomotor Excitability and Transcallosal Inhibition in People with Upper Limb Hemiparesis Secondary to Stroke
双侧运动启动和任务特定训练对中风继发上肢偏瘫患者皮质运动兴奋性和胼胝体抑制的影响
- 批准号:
10607582 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Hemodynamic basis for secondary cervical grey matter tissue loss after spinal cord injury
脊髓损伤后继发性颈灰质组织丢失的血流动力学基础
- 批准号:
10599354 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Enabling the Manipulation of Real Objects During Robot-Assisted Stroke Rehabilitation
在机器人辅助中风康复期间实现真实物体的操纵
- 批准号:
10256571 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Multi-Modal Fingertip Sensors for Prosthetic Hand Control and Feedback
用于假手控制和反馈的多模式指尖传感器
- 批准号:
10384800 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Hemodynamic basis for secondary cervical grey matter tissue loss after spinal cord injury
脊髓损伤后继发性颈灰质组织丢失的血流动力学基础
- 批准号:
10403616 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Rank functions on triangulated categories, homotopy theory and representations of finite groups
三角范畴的秩函数、同伦理论和有限群的表示
- 批准号:
EP/T030771/1 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Research Grant
Hemodynamic basis for secondary cervical grey matter tissue loss after spinal cord injury
脊髓损伤后继发性颈灰质组织丢失的血流动力学基础
- 批准号:
10179815 - 财政年份:2021
- 资助金额:
-- - 项目类别: