Ultrashort magnon pulses and phonon-magnon interactions
超短磁振子脉冲和声子-磁振子相互作用
基本信息
- 批准号:383678246
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Fellowships
- 财政年份:2017
- 资助国家:德国
- 起止时间:2016-12-31 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Investigation of ultrafast dynamics in nanostructures is crucial to overcome the speed limits in modern data recording and telecommunication technologies. Whereas ultrashort laser and acoustic stimuli become rather common to modulate optical properties and magnetic order, possibility to excite ultrashort magnon pulses at the nano-scale remains unexplored. The aim of this project is to develop an experimental technique to generate ultrashort magnon pulses, which can be potentially applied to manipulate magnetization in future spintronic devices. In addition to that, this study is important to reveal mechanisms of phonon-magnon interactions.In order to shed light on ultrafast magnetoacoustics, I will perform optical pump-probe experiments on thick films of different ferromagnetic materials. Magnetization dynamics will be monitored by means of the time-resolved magneto-optical Kerr effect (MOKE). Due to essentially non-uniform light absorption profile in thick ferromagnetic films, optical excitation with ultrashort laser pulses results in the generation of picosecond acoustic strain pulses. At the same time the laser-induced heating leads to the spatially localized demagnetization and changes in the magnetocrystalline anisotropy thereby altering the direction of the effective magnetic field within the heat penetration depth. This effect drives coherent magnetization dynamics which can be represented as a packet of spin waves. In my study I want to investigate propagation of the spin wave packet and its dependence on the spin wave dispersion, systematically varying the direction and magnitude of the external magnetic field. Furthermore, using trains of several pump pulses with adjustable delay between them, it should be possible to excite shorter magnon pulses. Experiments on different ferromagnetic materials (Ni, Co, Fe and their alloys) will help to reveal the material-specific properties of the spin wave generation and propagation as well as the phonon-magnon interactions at ultrafast time scales.
研究纳米结构中的超快动力学对于克服现代数据记录和通信技术中的速度限制至关重要。虽然超短激光和声学激励在调制光学性质和磁序方面变得相当普遍,但在纳米尺度上激发超短磁振子脉冲的可能性仍然未被探索。本项目的目的是开发一种产生超短磁振子脉冲的实验技术,该技术可能用于操纵未来自旋电子器件的磁化。此外,本研究对于揭示声子-磁振子相互作用的机制也很重要。为了阐明超快磁声,我将对不同铁磁材料的厚膜进行光学泵浦探测实验。磁化动力学将通过时间分辨的磁光克尔效应(MOKE)进行监测。由于厚铁磁薄膜中的光吸收分布基本上是不均匀的,用超短激光脉冲进行光激发会导致产生皮秒声应变脉冲。同时,激光诱导加热导致空间局部退磁和磁晶各向异性的变化,从而改变热穿透深度内的有效磁场的方向。这种效应驱动相干磁化动力学,其可以表示为自旋波包。在我的研究中,我想研究自旋波包的传播及其对自旋波色散的依赖性,系统地改变外部磁场的方向和大小。此外,使用具有可调延迟的多个泵浦脉冲串,应该可以激发更短的磁振子脉冲。对不同铁磁材料(Ni、Co、Fe及其合金)的实验将有助于揭示超快时间尺度下自旋波产生和传播以及声子-磁振子相互作用的材料特性。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Gilbert damping in NiFeGd compounds: Ferromagnetic resonance versus time-resolved spectroscopy
- DOI:10.1103/physrevb.99.104412
- 发表时间:2019-03
- 期刊:
- 影响因子:3.7
- 作者:R. Salikhov;A. Alekhin;T. Parpiiev;T. Pezeril;D. Makarov;R. Abrudan;R. Meckenstock;F. Radu;M. Farle;H. Zabel;V. Temnov
- 通讯作者:R. Salikhov;A. Alekhin;T. Parpiiev;T. Pezeril;D. Makarov;R. Abrudan;R. Meckenstock;F. Radu;M. Farle;H. Zabel;V. Temnov
Observation of the nonlinear Wood's anomaly on periodic arrays of nickel nanodimers
- DOI:10.1103/physrevb.98.245425
- 发表时间:2018-11
- 期刊:
- 影响因子:3.7
- 作者:Ngoc-Minh Tran;I. Chioar;A. Stein;A. Alekhin;V. Juv'e;G. Vaudel;I. Razdolski;V. Kapaklis;V. Temnov
- 通讯作者:Ngoc-Minh Tran;I. Chioar;A. Stein;A. Alekhin;V. Juv'e;G. Vaudel;I. Razdolski;V. Kapaklis;V. Temnov
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dr. Alexandr Alekhin, Ph.D.其他文献
Dr. Alexandr Alekhin, Ph.D.的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
CAREER: Fundamental phenomena in magnon condensates
职业:磁振子凝聚体的基本现象
- 批准号:
2338060 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Controlling Electron, Magnon, and Phonon States in Quasi-2D Antiferromagnetic Semiconductors for Enabling Novel Device Functionalities
控制准二维反铁磁半导体中的电子、磁子和声子态以实现新颖的器件功能
- 批准号:
2205973 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Dynamical magnetoelectric effect and magnon-photon coupling of toroidal moment
环形矩的动态磁电效应与磁子-光子耦合
- 批准号:
23K13064 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Theory for voltage-induced magnon in magnetic Weyl semimetals
磁性韦尔半金属中的电压感应磁振子理论
- 批准号:
23K19194 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Research Activity Start-up
Research on the control of photon-magnon coupling state by strong gate electric field
强栅极电场控制光子-磁振子耦合态的研究
- 批准号:
22KJ1956 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
ExpandQISE: Track 1: Understanding and controlling decoherence in hybrid spin qubit-magnon systems for advancing education and building workforce in emerging quantum technologies
ExpandQISE:轨道 1:理解和控制混合自旋量子位-磁振子系统中的退相干,以推进新兴量子技术的教育和培养劳动力
- 批准号:
2328822 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Highly Efficient Magnon-Mediated Microwave-to-Optical Converter Using a Disk-shaped Ferromagnetic Insulator
使用盘形铁磁绝缘体的高效磁振子介导微波光转换器
- 批准号:
23KJ1209 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Magnon-phonon transport in spin insulatronics devices
自旋绝缘电子器件中的磁振子-声子输运
- 批准号:
2885352 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
New Principle of Environmental Power Generation Using Magnon Shift Current
磁振子位移电流环保发电新原理
- 批准号:
23KJ0664 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Exploration of non-linear magnonics and magnon squeezing by magnetization state tomography
磁化态层析成像对非线性磁振子和磁振子压缩的探索
- 批准号:
22K14584 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists