Ergodic theory of nonlinear waves in discrete and continuous excitable media

离散和连续可激发介质中非线性波的遍历理论

基本信息

项目摘要

Many spatially extended physical, chemical and biological systems, including nerve fibres and muscle tissue, form so-called excitable media. These are modelled by nonlinear dynamical systems which are spatially arranged in locally coupled cells so that the excitation can be transferred in space. In agreement with the real observations, such media support the formation and propagation of waves that interact in intricate ways and thus generates rich dynamical phenomena. The proposed project concerns the mathematical analysis and one space dimension.In the past decades, the modelling and analysis of excitable media was predominantly done by using partial differential equations (PDEs) such as FitzHugh-Nagumo (FHN) equation. However, this continuum description is often unnecessary for the overall qualitative behaviour, and rigorous analysis of wave interaction phenomena in excitable PDE is impossible with current methods -- except for a few cases. Cellular automata (CA) are an alternative type of models for a physical system in which space, time and states lie in a discrete set. The discreteness can give an enormous simplification for modelling, simulation and analysis, but lacks first principle derivation and quantitative accuracy. Nevertheless, even simple CA have a rich behaviour and work as models in many areas. Greenberg and Hastings developed a family of CA, abbreviated as GHCA, which qualitatively model, e.g., nerve fibres and support the characteristic action potential waves. Notably, the GHCA have at least 3-states, while almost all analysis thus far concerns two-state CA.This project pursues the following main research questions:Q1: What are the long term statistical (ergodic) properties of cellular automata for excitable media? What is the role of nonlinear waves in these?Q2: Can the CA and discrete dynamical systems perspective with ergodic theory help to understand the complex PDE phenomena of strong interaction of localised waves in excitable media?Previous work of the doctoral candidate and the PIs revealed that the dynamics and complexity of the 3-state GHCA stems entirely from wave interaction. Moreover, it was shown that having more than two states makes this CA amenable to analysis by symbolic dynamics. The aims of this project are on the one hand (Q1) to analyse the ergodic properties, complexity and wave phenomena of GHCA and further CA models. On the other hand it aims to transfer these results to certain PDE (Q2). The latter concerns qualitative comparison to small CA with few states, and quantitative comparison with large CA from a full discretisation with many states. This in particular concerns an extension of the theta-model from neuroscience to a scalar PDE model, which - based on numerical simulations - features qualitatively the same dynamics as the 3-state GHCA.
许多空间延伸的物理、化学和生物系统,包括神经纤维和肌肉组织,形成所谓的可兴奋介质。这些都是由非线性动力系统建模的,这些系统在空间上排列在局部耦合的单元中,以便激励可以在空间中传递。与真实的观测一致,这种介质支持波的形成和传播,这些波以复杂的方式相互作用,从而产生丰富的动力学现象。在过去的几十年里,可激发介质的建模和分析主要是使用偏微分方程(PDE),如FitzHugh-Nagumo(FHN)方程。然而,这种连续描述往往是不必要的整体定性行为,和严格的波相互作用现象的分析,在可激发偏微分方程是不可能与目前的方法-除了少数情况下。元胞自动机(CA)是物理系统的一种替代类型的模型,其中空间,时间和状态位于离散集中。离散性可以为建模、仿真和分析提供极大的简化,但缺乏第一性原理推导和定量准确性。然而,即使是简单的CA也有丰富的行为,并在许多领域作为模型工作。 Greenberg和Hastings开发了一个CA家族,缩写为GHCA,其定性地建模,例如,神经纤维和支持特征动作电位波。值得注意的是,GHCA至少有3个状态,而迄今为止几乎所有的分析都涉及两个状态的CA。该项目追求以下主要研究问题:Q1:什么是长期的统计(遍历)性能的细胞自动机的可激发媒体?非线性波在其中的作用是什么?问题2:CA和离散动力系统的观点与遍历理论是否有助于理解可激发介质中局域波强相互作用的复杂PDE现象?博士候选人和PI先前的工作表明,三态GHCA的动力学和复杂性完全源于波的相互作用。此外,它表明,有两个以上的状态,使CA适合分析的符号动力学。这个项目的目的是一方面(Q1)分析的遍历性,复杂性和波动现象的GHCA和进一步的CA模型。另一方面,它旨在将这些结果转移到某些PDE(Q2)。后者涉及定性比较小CA与少数国家,和定量比较大CA从一个完整的离散化与许多国家。这特别涉及从神经科学到标量PDE模型的θ模型的扩展,该模型基于数值模拟,定性地具有与3状态GHCA相同的动力学特性。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Dynamics and topological entropy of 1D Greenberg–Hastings cellular automata
  • DOI:
    10.1017/etds.2020.18
  • 发表时间:
    2019-03
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Marc Kessebohmer;J. Rademacher;Dennis Ulbrich
  • 通讯作者:
    Marc Kessebohmer;J. Rademacher;Dennis Ulbrich
Pulse Replication and Accumulation of Eigenvalues
  • DOI:
    10.1137/20m1340113
  • 发表时间:
    2020-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    P. Carter;J. Rademacher;Bjorn Sandstede
  • 通讯作者:
    P. Carter;J. Rademacher;Bjorn Sandstede
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Jens Rademacher其他文献

Professor Dr. Jens Rademacher的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Fibered纽结的自同胚、Floer同调与4维亏格
  • 批准号:
    12301086
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
基于密度泛函理论金原子簇放射性药物设计、制备及其在肺癌诊疗中的应用研究
  • 批准号:
    82371997
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
  • 批准号:
    12247163
  • 批准年份:
    2022
  • 资助金额:
    18.00 万元
  • 项目类别:
    专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
  • 批准号:
    12126512
  • 批准年份:
    2021
  • 资助金额:
    12.0 万元
  • 项目类别:
    数学天元基金项目
钱江潮汐影响下越江盾构开挖面动态泥膜形成机理及压力控制技术研究
  • 批准号:
    LY21E080004
  • 批准年份:
    2020
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
  • 批准号:
    61671064
  • 批准年份:
    2016
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目
高阶微分方程的周期解及多重性
  • 批准号:
    11501240
  • 批准年份:
    2015
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
四维流形上的有限群作用与奇异光滑结构
  • 批准号:
    11301334
  • 批准年份:
    2013
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Concentration Phenomena in Nonlinear PDEs and Elasto-plasticity Theory
非线性偏微分方程中的集中现象和弹塑性理论
  • 批准号:
    EP/Z000297/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Development of a Causality Analysis Method for Point Processes Based on Nonlinear Dynamical Systems Theory and Elucidation of the Representation of Information Processing in the Brain
基于非线性动力系统理论的点过程因果分析方法的发展及大脑信息处理表征的阐明
  • 批准号:
    22KJ2815
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Analysis of photoresponses and transport phenomena by microscopic nonlinear response theory
用微观非线性响应理论分析光响应和输运现象
  • 批准号:
    23K03274
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Nonlinear critical point theory near singular solutions
奇异解附近的非线性临界点理论
  • 批准号:
    EP/W026597/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Many-Body Theory of Nonlinear Responses in Topological Quantum Materials
拓扑量子材料非线性响应的多体理论
  • 批准号:
    2889795
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Studies on potential theory for revealing nonlinear problems
揭示非线性问题的势论研究
  • 批准号:
    23K03149
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
DDALAB: Identifying Latent States from Neural Recordings with Nonlinear Causal Analysis
DDALAB:通过非线性因果分析从神经记录中识别潜在状态
  • 批准号:
    10643212
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Theory of the effect of dissipation in the nonlinear response of magnets
磁体非线性响应中耗散效应的理论
  • 批准号:
    23K03275
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A Hyperheuristic Method Using The Nonlinear Dynamical Theory for Next-Generation Delivery Planning
使用非线性动力学理论的超启发式方法进行下一代交付计划
  • 批准号:
    23K04274
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Nonlinear Theory for Smectics and Layered Solutions in Thin Films
薄膜中近晶和层状溶液的非线性理论
  • 批准号:
    2306393
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了