GAIN - GAllium In the slow Neutron capture process

GAIN - 镓 在缓慢的中子俘获过程中

基本信息

项目摘要

The explanation of the origin of heavy elements in the Universe is a fascinating and interdisciplinary challenge. When we look at the Sun and the elements on Earth, we see the combined results of the production of elements in stars. Starting from the lightest element Hydrogen, passing elements like Carbon and Iron, stars can produce all the elements up to Lead or even Uranium. All these elements are necessary for our life on earth. We aim at reproducing the abundances of the elements by nuclear reaction measurements in the laboratory and nucleosynthesis simulations on large computer farms.Most of the elements heavier then Iron are produced by neutron capture reactions. An atom consists of a nucleus with positively charged protons and uncharged neutrons. A nucleus can capture a neutron and thereby increase its mass. After one or more neutron captures the nucleus may become unstable, and a neutron will convert into a proton. With the additional proton, the atom belongs to the next heavier element.The slow neutron capture process takes place in massive stars which are more than eight times heavier than our Sun. The nuclei capture neutrons at a time scale of a few years. The heavy elements are formed over a period of ten thousands of years. The element Gallium is produced in this scenario. However, accurate data for the probability of neutron capture reactions that produce or destroy Gallium are not available. The project GAIN therefore aims at measuring the probabilities of neutron capture reactions on Gallium with two complementary methods. The data will be used to run nucleosynthesis simulations to quantify the amount of Gallium which different stars produce. Following the evolution of the Galaxy, where many generations of stars successively produced heavy elements, we will obtain accurate abundances and compare them to the observed abundances in our Solar System.
解释宇宙中重元素的起源是一个迷人的跨学科挑战。当我们观察太阳和地球上的元素时,我们看到的是恒星中元素产生的综合结果。从最轻的元素氢开始,经过像碳和铁这样的元素,恒星可以产生所有的元素,直到铅甚至铀。所有这些元素都是我们在地球上生活所必需的。我们的目标是通过实验室的核反应测量和大型计算机场的核合成模拟来再现元素的丰度。大多数比铁重的元素都是由中子捕获反应产生的。原子由带正电的质子和不带电荷的中子组成的原子核。原子核可以捕获中子,从而增加其质量。捕获一个或多个中子后,原子核可能变得不稳定,中子将转化为质子。加上额外的质子,原子属于下一个更重的元素。慢中子捕获过程发生在比我们的太阳重8倍多的大质量恒星中。原子核捕获中子的时间尺度为几年。重元素的形成经历了数万年的时间。镓元素就是在这种情况下产生的。然而,中子俘获反应产生或破坏镓的概率的准确数据是不可用的。因此,GAIN项目旨在用两种互补的方法测量镓的中子俘获反应的概率。这些数据将用于运行核合成模拟,以量化不同恒星产生的镓的数量。随着银河系的演化,许多代恒星相继产生重元素,我们将获得准确的丰度,并将其与太阳系中观测到的丰度进行比较。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Neutron-induced cross sections
  • DOI:
    10.1140/epjp/i2018-12295-3
  • 发表时间:
    2018-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Reifarth;P. Erbacher;S. Fiebiger;K. Göbel;T. Heftrich;M. Heil;F. Käppeler;N. Klapper;D. Kurtulgil;C. Langer;C. Lederer-Woods;A. Mengoni;B. Thomas;S. Schmidt;M. Weigand;M. Wiescher
  • 通讯作者:
    R. Reifarth;P. Erbacher;S. Fiebiger;K. Göbel;T. Heftrich;M. Heil;F. Käppeler;N. Klapper;D. Kurtulgil;C. Langer;C. Lederer-Woods;A. Mengoni;B. Thomas;S. Schmidt;M. Weigand;M. Wiescher
Investigation of the 7Li(p,n) neutron fields at high energies
高能 7Li(p,n) 中子场的研究
  • DOI:
    10.1088/1742-6596/1668/1/012003
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    B. Brückner;P. Erbacher;K. Göbel;T. Heftrich;K. Khasawneh;D. Kurtulgil;C. Langer;R. Nolte;M. Reich;R. Reifarth;M. Weigand;M. Wiescher;M. Volknandt
  • 通讯作者:
    M. Volknandt
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Rene Reifarth其他文献

Professor Dr. Rene Reifarth的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Rene Reifarth', 18)}}的其他基金

Neutron Induced Charged particle Emission
中子诱发带电粒子发射
  • 批准号:
    320731103
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Development of novel acyclic chelators for gallium-68 and scandium-44 radiometals used in PET
开发用于 PET 的镓 68 和钪 44 放射性金属的新型无环螯合剂
  • 批准号:
    EP/V028073/2
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
RII Track-4: NSF: Advancing High Density and High Operation Temperature Traction Inverter by Gallium Oxide Packaged Power Module
RII Track-4:NSF:通过氧化镓封装功率模块推进高密度和高工作温度牵引逆变器
  • 批准号:
    2327474
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Enhancement of interfacial thermal transport through evanescent electric field mediated acoustic phonon transmission for efficient cooling of high power Gallium Nitride devices
通过瞬逝电场介导的声声子传输增强界面热传输,以实现高功率氮化镓器件的高效冷却
  • 批准号:
    2336038
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Memory-Enhanced Entanglement Distribution with Gallium ARsenide quantum Dots
砷化镓量子点的记忆增强纠缠分布
  • 批准号:
    EP/Z000556/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
US GEOTRACES GP17-ANT: Dissolved Gallium, Barium, and Vanadium as interface, process, and circulation tracers in the Amundsen Sea
US GEOTRACES GP17-ANT:溶解的镓、钡和钒作为阿蒙森海中的界面、过程和循环示踪剂
  • 批准号:
    2242222
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Epitaxial Film Growth and Characterization of Stable and Metastable Gallium-Aluminum-Oxide Polymorphs
稳定和亚稳定镓铝氧化物多晶型物的外延膜生长和表征
  • 批准号:
    2324375
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Conference: 6th US Gallium Oxide Workshop
会议:第六届美国氧化镓研讨会
  • 批准号:
    2324760
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Creation of ultra-low defect gallium nitride crystals using a novel hybrid-type high-speed vapor phase epitaxy
使用新型混合型高速气相外延制造超低缺陷氮化镓晶体
  • 批准号:
    23K17743
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Exploring the Science of Defects, Electrical Properties, and Growth Mechanisms in Alpha Gallium Oxide
探索阿尔法氧化镓的缺陷、电性能和生长机制的科学
  • 批准号:
    23KJ1257
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Combating Antimicrobial Resistance with Bismuth, Gallium and Indium
用铋、镓和铟对抗抗菌素耐药性
  • 批准号:
    DP220103632
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了