BSCALE: Downscaling of precipitation: development, calibration and validation of a probabilisitc Bayesian approach.
BSCALE:降水量缩小:概率贝叶斯方法的开发、校准和验证。
基本信息
- 批准号:386938837
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2017
- 资助国家:德国
- 起止时间:2016-12-31 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Downscaling of atmospheric model output is necessary to map variables from low-resolution spatial scales of observation or model prediction down to local scales, at which variables are needed for a wide range of applications, including data gap filling, hydrological or glaciological predictions, climate prognosis, irrigation or energy forecasting. Statistical downscaling is performed by seeking stochastic relationships between large-scale observed indicators and/or model output, serving as predictors, and a local-scale predictand. The underlying transformations are usually linear regressions, or more general non-linear transformations, such as quantile matching. In both cases, stationary homoscedastic relationships between stochastic variables are assumed, which correctly map the conditional mean across the transformation, but not necessarily the tails of the distributions, which characterize extreme meteorological events. Here we propose a probabilistic downscaling approach for precipitation, implemented as a Bayesian conditional processor, which supports non-linear transformations between meso-scale observations and model predictions with local variables, whereby stochastic dependency relationships are modelled in the Gaussian space. The procedure allows using multiple predictors over a spatial window, and can be extended to include multiple source models. By using Multivariate Truncated Normal Distributions (MTND), heteroscedastic dependency structures between transformed variables can be modelled in the Gaussian space, then marginalized analytically with respect to predictors and back-transformed into the original space. The downscaling of the Bayesian conditional estimate of precipitation from the meso-scale to the local scale is performed with a non-Markovian non-stationary stochastic weather generator. The Bayesian processor and weather generator need to be calibrated and validated over a sufficiently long time window, for which continuous predictions and observations are available.
为了将观测或模型预测的低分辨率空间尺度的变量映射到地方尺度,必须缩小大气模型输出的尺度,在地方尺度上,各种应用都需要变量,包括填补数据空白、水文或冰川预测、气候预测、灌溉或能源预测。统计降尺度是通过寻找大规模观测指标和/或模型输出(作为预测因子)与局部尺度预测变量之间的随机关系来进行的。底层转换通常是线性回归,或者更一般的非线性转换,如分位数匹配。在这两种情况下,假设随机变量之间的平稳同方差关系,其正确地映射了变换中的条件均值,但不一定是分布的尾部,这是极端气象事件的特征。在这里,我们提出了一个概率降尺度降水的方法,实施贝叶斯条件处理器,它支持非线性转换中尺度观测和模型预测与局部变量,从而在高斯空间中建模随机依赖关系。该过程允许在空间窗口上使用多个预测因子,并且可以扩展到包括多个源模型。通过使用多元截断正态分布(MTND),变换后的变量之间的异方差依赖结构可以在高斯空间中建模,然后相对于预测因子进行分析边缘化,并将其转换回原始空间。用非马尔可夫非平稳随机天气发生器将贝叶斯条件降水估计从中尺度降到局地尺度。贝叶斯处理器和天气生成器需要在足够长的时间窗口内进行校准和验证,以便进行连续的预测和观测。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Probabilistic Precipitation Analysis in the Central Indus River Basin
印度河流域中部降水概率分析
- DOI:10.1016/b978-0-12-812782-7.00005-9
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Reggiani;A. Boyko;T.H.M. Rientjes;A. Khan
- 通讯作者:A. Khan
Assessing uncertainty for decision‐making in climate adaptation and risk mitigation
评估气候适应和风险缓解决策的不确定性
- DOI:10.1002/joc.6996
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Reggiani;E. Todini;O. Boyko;R. Buizza
- 通讯作者:R. Buizza
A Bayesian Processor of Uncertainty for Precipitation Forecasting Using Multiple Predictors and Censoring
使用多个预测器和审查的降水预报不确定性贝叶斯处理器
- DOI:10.1175/mwr-d-19-0066.1
- 发表时间:2019
- 期刊:
- 影响因子:3.2
- 作者:Reggiani;O. Boyko
- 通讯作者:O. Boyko
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Paolo Reggiani, Ph.D.其他文献
Professor Paolo Reggiani, Ph.D.的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Paolo Reggiani, Ph.D.', 18)}}的其他基金
prime-HYD - High Mountain Asian HYDrological variability
prime-HYD - 高山亚洲水文变率
- 批准号:
367416348 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Research Grants
GeCC-LAG-ENSEMBLES: a Generalized Calibration and Combination approach to mix in an optimum way lagged multi-model ensemble forecasts
GeCC-LAG-ENSEMBLES:一种广义校准和组合方法,以最佳方式混合滞后的多模型集合预测
- 批准号:
490941584 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
Changes in coastal oceanography over decades and longer: Combining dynamics and downscaling
几十年或更长时间沿海海洋学的变化:动态与降尺度相结合
- 批准号:
RGPIN-2022-03112 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
A novel downscaling-integration approach of satellite rainfall estimates for accurate river flow prediction
一种新颖的卫星降雨量估算降尺度整合方法,用于准确的河流流量预测
- 批准号:
22K01031 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Developing a Satellite-Based Fine Resolution Snow Water Equivalent Product Through Data Assimilation and Downscaling Approaches
通过数据同化和降尺度方法开发基于卫星的高分辨率雪水等效产品
- 批准号:
547785-2020 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral
EAGER: CAS-Climate: AI-driven Probabilistic Technique, Quantile Regression based Artificial Neural Network Model, for Bias Correction and Downscaling of CMIP6 Projections
EAGER:CAS-Climate:人工智能驱动的概率技术、基于分位数回归的人工神经网络模型,用于 CMIP6 投影的偏差校正和缩小
- 批准号:
2151651 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
Developing a Satellite-Based Fine Resolution Snow Water Equivalent Product Through Data Assimilation and Downscaling Approaches
通过数据同化和降尺度方法开发基于卫星的高分辨率雪水等效产品
- 批准号:
547785-2020 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral
Meteorological downscaling and atmospheric environment prediction using deep learning
利用深度学习进行气象降尺度和大气环境预测
- 批准号:
21H03593 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Developing a Satellite-Based Fine Resolution Snow Water Equivalent Product Through Data Assimilation and Downscaling Approaches
通过数据同化和降尺度方法开发基于卫星的高分辨率雪水等效产品
- 批准号:
547785-2020 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral
P2C2: High-resolution dynamical and statistical downscaling of El Nino Southern Oscillation (ENSO) response in proxy-critical locations across the tropical Pacific
P2C2:热带太平洋代理关键地点厄尔尼诺南方涛动 (ENSO) 响应的高分辨率动态和统计降尺度
- 批准号:
1902970 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Standard Grant
Developing statistical downscaling to improve water quality understanding and management in the Ramganga sub-basin
开展统计降尺度以改善拉姆甘加次流域的水质了解和管理
- 批准号:
EP/T003669/1 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Research Grant
Statistical Downscaling of Future Urban Climate Based on Reconstruction of Urban Climate Observation Network in Sendai
基于仙台城市气候观测网重建的未来城市气候统计降尺度
- 批准号:
19K04734 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




