Labor market policy assignment at entry into unemployment: Analysis using machine learning techniques and randomized controlled trials
失业时的劳动力市场政策分配:使用机器学习技术和随机对照试验进行分析
基本信息
- 批准号:387482412
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Priority Programmes
- 财政年份:2017
- 资助国家:德国
- 起止时间:2016-12-31 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Even though unemployment has been decreasing in recent years in Germany, improving the chances reintegration of unemployed persons into the labor market remains an important challenge for policy makers as well as for the labor market administration. In our proposed project, we want to have a closer look at important tools used by caseworkers at the beginning and during the placement process. Profiling assigns unemployed individuals into a small number of categories. These categories shape the mix of active labor market policy treatments to which the individual is subsequently exposed. We propose to use methods relatively new to economics for a deeper analysis of profiling of the unemployed as well as of heterogeneous treatment effects in experiments closely related to the placement process and thus to profiling issues. During recent years, administrative data sets encompassing unemployed persons have improved in size and quality, and computers have become able to handle larger datasets. Only recently, economists have begun to take an interest in data mining and machine learning techniques to work with big data, of which administrative data are a variant. Among other potentials, big data (and related big data techniques) allow conducting highly specific segmentations and to support human decision making with automated algorithms. A key aim of our proposal is therefore to explore the potential of big data techniques for profiling the unemployed and for the identification of heterogeneous treatment effects: (1) In a first step, we will compare how accurately different econometric and machine-learning techniques predict the duration of unemployment and compare the results with those of a soft profiling conducted by caseworkers. In doing so, we will also address the complex interplay between profiling and the evaluation of active labor market programs. Dependent on the results of the previous analyses, we will aim to start a project to test a tool displaying the predicted duration of unemployed persons within the framework of a randomized field experiment. (2) In a second step, we will use data from a recently conducted unique field experiment that randomly varied the usage of a) integration agreements and b) an additional newly developed placement tool, as well as c) the possibility to receive intensive in-house counselling services of the Federal Employment Agency. These elements of the placement process are tightly related to the soft profiling conducted by caseworkers. An aim of this second step is to identify groups with heterogeneous treatment effects across groups using machine-learning techniques. Our work should not only provide an important scientific contribution to the literature, but will also be of high interest for policy makers and the labor market administration in Germany.
尽管近年来德国的失业率一直在下降,但提高失业人员重新融入劳动力市场的机会仍然是决策者和劳动力市场管理部门面临的一项重要挑战。在我们提出的项目中,我们想要仔细研究社会工作者在开始和安置过程中使用的重要工具。剖析法将失业人员划分为少数类别。这些类别决定了个人随后面临的积极劳动力市场政策待遇的组合。我们建议使用相对较新的经济学方法来深入分析失业者的特征,以及与安置过程密切相关的实验中的异质治疗效果,从而分析问题。近年来,包括失业人员在内的行政数据集在规模和质量上都有所改善,计算机已经能够处理更大的数据集。直到最近,经济学家才开始对处理大数据的数据挖掘和机器学习技术产生兴趣,而管理数据是大数据的一种变体。在其他潜力中,大数据(以及相关的大数据技术)允许进行高度具体的细分,并通过自动化算法支持人类决策。因此,我们的建议的一个关键目的是探索大数据技术在分析失业者和识别异质治疗效果方面的潜力:(1)在第一步,我们将比较不同的计量经济学和机器学习技术预测失业持续时间的准确性,并将结果与由社会工作者进行的软分析的结果进行比较。在此过程中,我们还将讨论分析和评估活跃劳动力市场计划之间复杂的相互作用。根据先前分析的结果,我们将开始一个项目,以测试一个在随机现场实验框架内显示失业人员预测持续时间的工具。(2)在第二步中,我们将使用最近进行的一项独特的实地实验的数据,该实验随机改变了a)整合协议和b)额外新开发的安置工具的使用情况,以及c)接受联邦就业局密集内部咨询服务的可能性。安置过程中的这些要素与个案工作者进行的软分析密切相关。第二步的目的是使用机器学习技术识别具有不同治疗效果的组。我们的工作不仅应该为文献提供重要的科学贡献,而且也将对德国的政策制定者和劳动力市场管理部门产生高度的兴趣。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Gerard J. van den Berg其他文献
Professor Dr. Gerard J. van den Berg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Gerard J. van den Berg', 18)}}的其他基金
The effect of regional internet availability on search and matching outcomes
区域互联网可用性对搜索和匹配结果的影响
- 批准号:
391065346 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Priority Programmes
Using randomized field experiments to evaluate support programs for older and low-skilled workers with combined survey-register data
使用随机现场实验结合调查登记数据来评估针对老年和低技能工人的支持计划
- 批准号:
256847276 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Priority Programmes
Nonparametric Identification and Inference in Duration Analysis
持续时间分析中的非参数识别和推理
- 批准号:
193728269 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Research Units
相似国自然基金
Applications of AI in Market Design
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研 究基金项目
Exploring the Intrinsic Mechanisms of CEO Turnover and Market
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
- 批准号:W2433169
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
相似海外基金
Local labor market contexts and substance use in young and middle adulthood: Using agent-based modeling to guide substance use prevention strategies
当地劳动力市场环境和青壮年的物质使用:使用基于主体的模型来指导物质使用预防策略
- 批准号:
10740252 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Heterogeneous impacts of climate policy on regional and gendered labor market outcomes in Europe
气候政策对欧洲区域和性别劳动力市场结果的异质影响
- 批准号:
508425190 - 财政年份:2022
- 资助金额:
-- - 项目类别:
WBP Fellowship
Collaborative Research: Labor Market and Public Policy Preferences
合作研究:劳动力市场和公共政策偏好
- 批准号:
2149371 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Labor Market and Public Policy Preferences
合作研究:劳动力市场和公共政策偏好
- 批准号:
2149414 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Economic theory of fiscal sustainability: Labor market, policy making, and international capital market
财政可持续性的经济理论:劳动力市场、政策制定和国际资本市场
- 批准号:
21K01472 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Labor Market Conditions and the Quality of Long-Term Care Provided to Older Adults
劳动力市场状况和为老年人提供的长期护理的质量
- 批准号:
10097276 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Labor Market Conditions and the Quality of Long-Term Care Provided to Older Adults
劳动力市场状况和为老年人提供的长期护理的质量
- 批准号:
10552064 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Labor Market Conditions and the Quality of Long-Term Care Provided to Older Adults
劳动力市场状况和为老年人提供的长期护理的质量
- 批准号:
10328539 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Teacher Effectiveness and Policy Designs on Teachers' Labor Market
教师效能与教师劳动力市场政策设计
- 批准号:
1947674 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Standard Grant
A Comparative Study of the Welfare for Employment Policy in Japan and Germany: A Verification of Labor Market Reform
日德就业福利政策比较研究:劳动力市场改革的验证
- 批准号:
19K01338 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)